Pushing your enterprise cluster solution to deliver the highest performance at the lowest cost is key in architecting scale-out datacenters. Administrators must expand their storage to keep pace with their compute power as capacity and processing demands grow.

safijidsjfijdsifjiodsjfiosjdifdsoijfdsoijfsfkdsjifodsjiof dfisojfidosj iojfsdiojofodisjfoisdjfiodsj ofijds fds foids gfd gfd gfd gfd gfd gfd gfd gfd gfd gfdg dfg gfdgfdg fd gfd gdf gfd gdfgdf g gfd gdfg dfgfdg fdgfdgBeyond price and capacity, storage resources must also deliver enough bandwidth to support these growing demands. Without enough I/O bandwidth, connected servers and users can bottleneck, requiring sophisticated storage tuning to maintain reasonable performance. By using direct attached storage (DAS) server architectures, IT administrators can

Diagram of DataBolt technology buffering 6Gb/s SAS media while maintaining a 12Gb/s SAS link.

Beyond price and capacity, storage resources must also deliver enough bandwidth to support these growing demands. Without enough I/O bandwidth, connected servers and users can bottleneck, requiring sophisticated storage tuning to maintain reasonable performance. By using direct attached storage (DAS) server architectures, IT administrators can reduce the complexities and performance latencies associated with storage area networks (SANs). Now, with LSI 12Gb/s SAS or MegaRAID® technology, or both, connected to 12Gb/s SAS expander-based storage enclosures, administrators can leverage the DataBolt™ technology to clear I/O bandwidth bottlenecks. The result: better overall resource utilization, while preserving legacy drive investments. Typically a slower end device would step down the entire 12Gb/s SAS storage subsystem to 6Gb/s SAS speeds. How does Databolt technology overcome this? Well, without diving too deep into the nuts and bolts, intelligence in the expander buffers data and then transfers it out to the drives at 6Gb/s speeds in order to match the bandwidth between faster hosts and slower SAS or SATA devices.

The DataBolt enabled Hadoop server bandwidth is optimized with 12Gb/s SAS.

So for this demonstration at AIS, we are showcasing two Hadoop Distributed File System (HDFS) servers. Each server houses the newly shipping MegaRAID 9361-8i 12Gb/s SAS RAID controller connected to a drive enclosure featuring a 12Gb/s SAS expander and 32 6Gb/s SAS hard drives. One has a DataBolt-enabled configuration, while the other is disabled.

For the benchmarks, we ran DFSIO, which simulates MapReduce workloads and is typically used to detect performance network bottlenecks and tune hardware configurations as well as overall I/O performance.

The primary goal of the DFSIO benchmarks is to saturate storage arrays with random read workloads in order to ensure maximum performance of a cluster configuration. Our tests resulted in MapReduce Jobs completing faster in 12Gb/s mode, and overall throughput increased by 25%.

DataBolt optimization of DFSIO MapReduce tests (MB/s) per cluster slot maps.

Tags: , , , , , , , , , , , , , , , ,
Views: (2084)


Many of you may have heard of a poem written by Robert Fulgham 25 years ago called “All I Really Need to Know I Learned in Kindergarten.” In it he provides such pearls of wisdom like “Play fair,” “Clean up your own mess,” “Don’t take things that aren’t yours” and “Flush.” By now you’re wondering what any of this has to do with storage technology. Well the #1 item on the kindergarten knowledge list is “Share Everything.” And from my perspective that includes DAS (direct-attached storage).

Sharable DAS has been a primary topic of discussion at this year’s annual LSI Accelerating Innovation Summit (AIS). During one keynote session I proposed a continuum of data sharing, spanning from traditional server-based DAS to traditional external NAS and SAN with multiple points in between – including external DAS, simple pooled storage, advanced pooled storage, shared storage and HA (high-availability) shared storage. Each step along the continuum adds incremental features and value, giving datacenter architects the latitude to choose – and pay for – only the level of sharing absolutely required, and no more. This level of choice is being very warmly received by the market as storage requirements vary widely among Web-cloud, private cloud, traditional enterprise, and SMB configurations and applications.

Sharable DAS pools storage for operational benefits and efficiencies
Sharable DAS, with its inherent storage resource pooling, offers a number of operational benefits and efficiencies when applied at the rack level:

  • Standardized storage architectures, leveraging economies of scale of today’s high-volume DAS solutions, and minimizing storage qualifications
  • Simplified volume, boot and unified storage management by extending today’s widely deployed storage management tools
  • Reduced number of compute and storage SKUs within a datacenter, minimizing training and maintenance costs
  • Simplified life cycle management by de-coupling the upgrade cycles of compute (typically 18-24 months) and storage (typically 3-5 years)

LSI rolls out proof-of-concept Rack Scale architecture using sharable DAS
In addition to just talking about sharable DAS at AIS, we also rolled out a proof-of-concept Rack Scale architecture employing sharable DAS.  In it we configured 20 servers with 12Gb/s SAS RAID controllers, a prototype 40-port 12Gb/s SAS switch (that’s 160 12Gb/s SAS lanes) and 10 JBODs with 12Gb/s SAS for a total of 200 disk drives – all in a single rack. The drives were configured as a single storage resource pool with our media sharing (ability to spread volumes across multiple disk drives and aggregate disk drive bandwidth) and distributed RAID (ability to disperse data protection across multiple disk drives) features. This configuration pools the server storage into a single resource, delivering substantial, tangible performance and availability improvements, when compared to 20 stand-alone servers. In particular, the configuration:

  • Enables active servers to claim unused bandwidth and IOPs
  • Enhances server performance when a disk drive fails, providing consistent high performance to applications by distributing the impact of a single drive failure across all the drives in the pool
  • Accelerates time to redundancy (TTR), greatly minimizing the window of vulnerability for subsequent disk drive failures

I’m sure you’ll agree with me that Rack Scale architecture with sharable DAS is clearly a major step forward in providing a wide range of storage solutions under a single architecture. This in turn provides a multitude of operational efficiencies and performance benefits, giving datacenter architects wide latitude to employ what is needed – and only what is needed.

Now that we’ve tackled the #1 item on the kindergarten learning list, maybe I’ll set my sights on another item, like “Take a nap every afternoon.”

 

 

Tags: , , , , , ,
Views: (493)


With the much anticipated launch of 12gb/s SAS MegaRAID and 12Gb/s SAS expanders featuring DataBolt™ SAS bandwidth-aggregation technologies, LSI is taking the bold step of moving beyond traditional IO performance benchmarks like IOMeter to benchmarks that simulate real-world workloads.

In order to fully illustrate the actual benefit many IT administrators can realize using 12Gb/s SAS MegaRAID products on their new server platforms, LSI is demonstrating application benchmarks on top of actual enterprise applications at AIS.

For our end-to-end 12Gb/s SAS MegaRAID demonstration, we chose Benchmark Factory® for Databases running on a MySQL Database. Benchmark Factor, a database performance testing tool that allows you to conduct database workload replay, industry-standard benchmark testing and scalability testing, uses real database application workloads such as TPC-C, TPC-E and TPC-H. We chose the TPC-H benchmark, a decision-support benchmark, because of its large streaming query profile. TPC-H shows the performance of decision support systems – which examine large volumes of data to simplify the analysis of information for business decisions – making it an excellent benchmark to showcase 12Gb/s SAS MegaRAID technology and its ability to maximize the bandwidth of PCIe 3.0 platforms, compared to 6Gb/s SAS.

LSI MegaRAID SAS 9361-8i storage performance on display using Spotlight® on MySQL, which is monitoring the data traffic across Intel’s new R2216GZ4GC server based on the new Intel® Xeon® processor E5-2600 v2.

The demo uses the latest Intel R2216GZ4GC servers based on the new Intel® Xeon® processor E5-2600 v2 product family to illustrate how 12Gb/s SAS MegaRAID solutions are needed to take advantage of the bandwidth capabilities of PCIe® 3.0 bus technology.

When the benchmarks are run side-by-side on the two platforms, you can quickly see how much faster data transfer rates are executed, and how much more efficiently the Intel servers handles data traffic. We used Quest Software’s Spotlight® on MySQL tool to monitor and measure data traffic from end storage devices to the clients running the database queries. More importantly, the test also illustrates how many more user queries the 12Gb/s SAS-based system can handle before complete resource saturation – 60 percent more than 6Gb/s SAS in this demonstration.

What does this mean to IT administrators? Clearly, resourse utilization is much higher,  improving total cost of ownership (TCO) with their database server. Or, conversley, 12Gb/s SAS can reduce cost per IO since fewer drives can be used with the server to deliver the same performance as the previous 6Gb/s SAS generation of storage infrastructure.

Tags: , , , , , , , , , , , , ,
Views: (412)


Back in the 1990s, a new paradigm was forced into space exploration. NASA faced big cost cuts. But grand ambitions for missions to Mars were still on its mind. The problem was it couldn’t dream and spend big. So the NASA mantra became “faster, better, cheaper.” The idea was that the agency could slash costs while still carrying out a wide variety of programs and space missions. This led to some radical rethinks, and some fantastically successful programs that had very outside-the-box solutions. (Bouncing Mars landers anyone?)

That probably sounds familiar to any IT admin. And that spirit is alive at LSI’s AIS – The Accelerating Innovation Summit, which is our annual congress of customers and industry pros, coming up Nov. 20-21 in San Jose. Like the people at Mission Control, they all want to make big things happen… without spending too much.

Take technology and line of business professionals. They need to speed up critical business applications. A lot. Or IT staff for enterprise and mobile networks, who must deliver more work to support the ever-growing number of users, devices and virtualized machines that depend on them. Or consider mega datacenter and cloud service providers, whose customers demand the highest levels of service, yet get that service for free. Or datacenter architects and managers, who need servers, storage and networks to run at ever-greater efficiency even as they grow capability exponentially.

(LSI has been working on many solutions to these problems, some of which I spoke about in this blog.)

It’s all about moving data faster, better, and cheaper. If NASA could do it, we can too. In that vein, here’s a look at some of the topics you can expect AIS to address around doing more work for fewer dollars:

  • Emerging solid state technologies – Flash is dramatically enhancing datacenter efficiency and enabling new use cases. Could emerging solid state technologies such as Phase Change Memory (PCM) and Spin-Torque Transfer (STT) RAM radically change the way we use storage and memory?
  • Hyperscale deployments – Traditional SAN and NAS lack the scalability and economics needed for today’s hyperscale deployments. As businesses begin to emulate hyperscale deployments, they need to scale and manage datacenter infrastructure more effectively. Will software increasingly be used to both manage storage and provide storage services on commodity hardware?
  • Sub-20nm flash – The emergence of sub-20nm flash promises new cost savings for the storage industry. But with reduced data reliability, slower overall access times and much lower intrinsic endurance, is it ready for the datacenter?
  • Triple-Level Cell flash – The move to Multi-Level Cell (MLC) flash helped double the capacity per square millimeter of silicon, and Triple-Level Cell (TLC) promises even higher storage density. But TCL comes at a cost: its working life is much shorter than MLC. So what, if any role will TLC play in the datacenter? Remember – it wasn’t long ago no one believed MLC could be used in enterprise.
  • Flash for virtual desktop – Virtual desktop technology has seen significant growth in today’s datacenters. However, storage demands on highly utilized VDI servers can cause unacceptable response times. Can flash help virtual desktop environments achieve the best overall performance to improve end-user productivity while lowering total solution cost?
  • Flash caching – Oracle and storage vendors have started enhancing their products to take advantage of flash caching. How can database administrators implement caching technology running on Oracle® Linux with Oracle Unbreakable Enterprise Kernel, utilizing Oracle Database Smart Flash Cache?
  • Software Defined Networks (SDN) – SDNs promise to make networks more flexible, easier to manage, and programmable. How and why are businesses using SDNs today?  
  • Big data analytics – Gathering, interpreting and correlating multiple data streams as they are created can enhance real-time decision making for industries like financial trading, national security, consumer marketing, and network security. How can specialized silicon greatly reduce the compute power necessary, and make the “real-time” part of real-time analytics possible?
  • Sharable DAS – Datacenters of all sizes are struggling to provide high performance and 24/7 uptime, while reducing TCO. How can DAS-based storage sharing and scaling help meet the growing need for reduced cost and greater ease of use, performance, agility and uptime?
  • 12Gb/s SAS – Applications such as Web 2.0/cloud infrastructure, transaction processing and business intelligence are driving the need for higher-performance storage. How can 12Gb/s SAS meet today’s high-performance challenges for IOPS and bandwidth while providing enterprise-class features, technology maturity and investment protection, even with existing storage devices?

And, I think you’ll find some astounding products, demos, proof of concepts and future solutions in the showcase too – not just from LSI but from partners and fellow travelers in this industry. Hey – that’s my favorite part. I can’t wait to see people’s reactions.

Since they rethought how to do business in 2002, NASA has embarked on nearly 60 Mars missions. Faster, better, cheaper. It can work here in IT too.

Tags: , , , , , , , , , , , , , , , , , ,
Views: (633)