Scroll to Top

It’s the start of the new year, and it’s traditional to make predictions – right? But predicting the future of the datacenter has been hard lately. There have been and continue to be so many changes in flight that possibilities spin off in different directions. Fractured visions through a kaleidoscope. Changes are happening in the businesses behind datacenters, the scale, the tasks and what is possible to accomplish, the value being monetized, and the architectures and technologies to enable all of these.

A few months ago I was asked to describe the datacenter in 2020 for some product planning purposes. Dave Vellante of Wikibon & John Furrier of SiliconANGLE asked me a similar question a few weeks ago. 2020 is out there – almost 7 years. It’s not easy to look into the crystal ball that far and figure out what the world will look like then, especially when we are in the midst of those tremendous changes. For some context I had to think back 7 years – what was the datacenter like then, and how profound have the changes been over the past 7 years?

And 7 years ago, our forefathers…
It was a very different world. Facebook barely existed, and had just barely passed the “university only” membership. Google was using Velcro, Amazon didn’t have its services, cloud was a non-existent term. In fact DAS (direct attach storage) was on the decline because everyone was moving to SAN/NAS. 10GE networking was in the future (1GE was still in growth mode). Linux was not nearly as widely accepted in enterprise – Amazon was in the vanguard of making it usable at scale (with Werner Vogels saying “it’s terrible, but it’s free, as in free beer”). Servers were individual – no “PODs,” and VMware was not standard practice yet. SATA drives were nowhere in datacenters.

An enterprise disk drive topped out at around 200GB in capacity. Nobody used the term petabyte. People, including me, were just starting to think about flash in datacenters, and it was several years later that solutions became available. Big data did not even exist. Not as a term or as a technology, definitely not Hadoop or graph search. In fact, Google’s seminal paper on MapReduce had just been published, and it would become the inspiration for Hadoop – something that would take many years before Yahoo picked it up and helped make it real.

Analytics were statistical and slow, and you had to be very explicitly looking for something. Advertising on the web was a modest business. Cold storage was tape or MAID, not vast pools of cheap disks in the cloud at absurdly low price points. None of the Chinese web-cloud guys existed… In truth, at LSI we had not even started looking at or getting to know the web datacenter guys. We assumed they just bought from OEMs…

No one streamed mainstream media – TV and movies – and there were no tablets to stream them to. YouTube had just been purchased by Google. Blu-ray was just getting started and competing with HD-DVD (which I foolishly bought 7 years ago), and integrated GPS’s in your car were a high-tech growth area. The iPhone or Android had not launched, Danger’s Sidekick was the cool phone, flip phones were mainstream, there was no App store or the billions of sales associated with that, and a mobile web browser was virtually useless.

Dell, IBM, and HP were the only real server companies that mattered, and the whole industry revolved around them, as well as EMC and NetApp for storage. Cisco, Lenovo and Huawei were not server vendors. And Sun was still Sun.

7 years from now
So – 7 years from now? That’s hard to predict, so take this with a grain of salt… There are many ways things could play out, especially when global legal, privacy, energy, hazardous waste recycling, and data retention requirements come into play, not to mention random chaos and invention along the way.

Compute-centric to dataflow-centric
Major applications are changing (have changed) from compute-centric to dataflow architectures. That is big data. The result will probably be a decline in the influence of processor vendors, and the increased focus on storage, network and memory, and optimized rack-level architectures. A handful of hyperscale datacenters are leading the way, and dragging the rest of us along. These types of solutions are already being deployed in big enterprise for specialized use cases, and their adoption will only increase with time. In 7 years, the main deployment model will echo what hyperscale datacenters are doing today: disaggregated racks of compute, memory and storage resources.

The datacenter is now being viewed as a profit growth enabler, rather than a cost center. That implies more compute = more revenue. That changes the investment profile and the expectations for IT. It will not be enough for enterprise IT departments to minimize change and risk because then they would be slowing revenue growth.

Customers and vendors
We are in the early stages of a customer revolt. Whether it’s deserved or not is immaterial, though I believe it’s partially deserved. Large customers have decided (and I’m doing broad brush strokes here) that OEMs are charging them too much and adding “features” that add no value and burn power, that the service contracts are excessively expensive and that there is very poor management interoperability among OEM offerings – on purpose to maintain vendor lockin. The cost structures of public cloud platforms like Amazon are proof there is some merit to the argument. Management tools don’t scale well, and require a lot of admin intervention. ISVs are seen as no better. Sure the platforms and apps are valuable and critical, but they’re really expensive too, and in a few cases, open source solutions actually scale better (though ISVs are catching up quickly).

The result? We’re seeing a push to use whitebox solutions that are interoperable and simple. Open source solutions – both software and hardware – are gaining traction in spite of their problems. Just witness the latest Open Compute Summit and the adoption rate of Hadoop and OpenStack. In fact many large enterprises have a policy that’s pretty much – any new application needs to be written for open source platforms on scale-out infrastructure.

Those 3 OEMs are struggling. Dell, HP and IBM are selling more servers, but at a lower revenue. Or in the case of IBM – selling the business. They are trying to upsell storage systems to offset those lost margins, and they are trying to innovate and vertically integrate to compensate for the changes. In contrast we’re seeing a rapid increase planned from self-built, self-architected hyperscale datacenters, especially in China. To be fair – those pressures on price and supplier revenue are not necessarily good for our industry. As well, there are newer entrants like Huawei and Cisco taking a noticeable chunk of the market, as well as an impending growth of ISV and 3rd party full rack “shrink wrapped” systems. Everybody is joining the party.

Storage, cold storage and storage-class memory
Stepping further out on the limb, I believe (but who really knows) that by 2020 storage as we know is no longer shipping. SMB is hollowed out to the cloud – that is – why would any small business use anything but cloud services? The costs are too compelling. Cloud storage is stratified into 3 levels: storage-class memory, flash/NVM and cool/cold bulk disk storage. Cold storage is going to be a very, very important area. You need to save that data, but spend zero power, and zero $ on storing it. Just look at some of the radical ideas like Facebook’s Blu-ray jukebox to address that, which was masterminded by a guy I really like –  Gio Coglitore – and I am very glad is getting some rightful attention. (http://www.wired.com/wiredenterprise/2014/02/facebook-robots/)

I believe that pooled storage class memory is inevitable and will disrupt high-performance flash storage, probably beginning in 2016. My processor architect friends and I have been daydreaming about this since 2005. That disruption’s OK, because flash use will continue to grow, even as disk use grows. There is just too much data. I’ve seen one massive vendor’s data showing average servers are adding something like 0.2 hard disks per year and 0.1 SSDs per year – and that’s for the average server including diskless nodes that are usually the most common in hyperscale datacenters. So growth in spite of disruption and capacity growth.

Key/value:
Data will be pooled, and connected by fabric as distributed objects or key/value pairs, with erasure coding. In fact, Object store (key/value – whatever) may have “obsoleted” block storage. And the need for these larger objects will probably also obsolete file as we’re used to it. Sure disk drives may still be block based, though key/value gives rise to all sorts of interesting opportunities to support variable size structures, obscure small fault domains, and variable encryption/compression without wasting space on disk platters. I even suspect that disk drives as we know them will be morphing into cold store specialty products that physically look entirely different and are made from different materials – for a lot of reasons. 15K drives will be history, and 10K drives may too. In fact 2” drives may not make sense anymore as the laptop drive and 15K drive disappear and performance and density are satisfied by flash.

Enterprise becomes private cloud that is very similar structurally to hyperscale, but is simply in an internal facility. And SAN/NAS products as we know them will be starting on the long end of the tail as legacy support products. Sure new network based storage models are about to emerge, but they’re different and more aligned to key/value.

SoC servers
Rack-scale architectures will have taken over clustered deployments. That means pooled resources. Processing will be pools of single socket SoC servers enabling massive clusters, rather than lots of 2- socket servers. These SoCs might even be mobile device SoCs at some point or at least derived from that – the economics of scale and fast cadence of consumer SoCs will make that interesting, maybe even inevitable. After all, the current Apple A7 in the iphone 5S is a dual core, 64-bit V8 ARM at 1.4GHz and the whole iPhone costs as much as mainstream server processor chips. In a few years, an 8 or 16 core equivalent at 1.5GHz or 2GHz is not hard to imagine, and the cost structure should be excellent.

Rapidly evolving open source applications will have morphed into eventually consistent dataflow tasks. Or they will be emerging in-memory applications working on vast data structures in the pooled storage class memory at the rack or larger scale, which will add tremendous monetary value to businesses. Whatever the evolutionary paths – the challenge for the next 10 years is optimizing dataflow as the amount used continues to exponentially grow. After all – data has value in aggregate, so why would you throw anything away, even as the amount we generate increases?

Clusters will be autonomous. Really autonomous. As in a new term I love: “emergent.” It’s when you can start using big data analytics to monitor the datacenter, and make workload/management and data placement decisions in real time, automatically, and the datacenter begins to take on un-predicted characteristics. Deployment will be autonomous too. Power on a pod of resources, and it just starts working. Google does that already.

The network
Layer 2 datacenter network switches will either be disappearing or will have migrated to a radically different location in the rack hierarchy. There are many ways this can evolve. I’m not sure which one(s) will dominate, but I know it will look different. And it will have different bandwidth. 100G moving to 400G interconnect fabric over fiber.

So there you have it. Guaranteed correct…

Different applications and dataflow, different architectures, different processors, different storage, different fabrics. Probably even a re-alignment of vendors.

Predicting the future of the datacenter has not been easy. There have been, and are so many changes happening. The businesses behind them. The scale, the tasks and what is possible to accomplish, the value being monetized, and the architectures and technologies to enable all of these. But at least we have some idea what’s ahead. And it’s pretty different, and exciting.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (3916)