The world according to DAS

by

You might be surprised to find out how big the infrastructure for cloud and Web 2.0 is. It is mind-blowing. Microsoft has acknowledged packing more than 1 million servers into its datacenters, and by some accounts that is fewer than Google’s massive server count but a bit more than Amazon.  

Facebook’s server count is said to have skyrocketed from 30,000 in 2012 to 180,000 just this past August, serving 900 million plus users. And the social media giant is even putting its considerable weight behind the Open Compute effort to make servers fit better in a rack and draw less power. The list of mega infrastructures also includes Tencent, Baidu and Alibaba and the roster goes on and on.

Even more jaw-dropping is that almost 99.9% of these hyperscale infrastructures are built with servers featuring direct-attached storage. That’s right – they do the computing and store the data. In other words, no special, dedicated storage gear. Yes, your Facebook photos, your Skydrive personal cloud and all the content you use for entertainment, on-demand video and gaming data are stored inside the server.

Direct-attached storage reigns supreme
Everything in these infrastructures – compute and storage – is built out of x-86 based servers with storage inside. What’s more, growth of direct-attached storage is many folds bigger than any other storage deployments in IT. Rising deployments of cloud, or cloud-like, architectures are behind much of this expansion.

The prevalence of direct-attached storage is not unique to hyperscale deployments. Large IT organizations are looking to reap the rewards of creating similar on-premise infrastructures. The benefits are impressive: Build one kind of infrastructure (server racks), host anything you want (any of your properties), and scale if you need to very easily. TCO is much less than infrastructures relying on network storage or SANs.

With direct-attached you no longer need dedicated appliances for your database tier, your email tier, your analytics tier, your EDA tier. All of that can be hosted on scalable, share-nothing infrastructure. And just as with hyperscale, the storage is all in the server. No SAN storage required.

Open Compute, OpenStack and software-defined storage drive DAS growth
Open Compute is part of the picture. A recent Open Compute show I attended was mostly sponsored by hyperscale customers/suppliers. Many big-bank IT folks attended. Open Compute isn’t the only initiative driving growing deployments of direct-attached storage. So is software-defined storage and OpenStack. Big application vendors such as Oracle, Microsoft, VMware and SAP are also on board, providing solutions that support server-based storage/compute platforms that are easy and cost-effective to deploy, maintain and scale and need no external storage (or SAN including all-flash arrays).

So if you are a network-storage or SAN manufacturer, you have to be doing some serious thinking (many have already) about how you’re going to catch and ride this huge wave of growth.

 

 

 

Tags: , , , , , , , , , , , , , , , ,
Views: (1929)


Where did my email go?
This week I was dragged into to the virtualized cloud kicking and screaming … well, sort of.  LSI has moved me, and all my co-workers, from my nice, safe local Exchange server to one in the amorphous, mysterious cloud. Scary. My IT department says the new cloud email is a great thing. They are now promising me unlimited email storage. Long gone will be the days of harrowing emails telling me I am approaching my storage limit and soon will be unable to send new email.

With cloud email, I can keep everything forever! I am not quite sure that saving mountains of email will be a good thing :-).  Other than having to redirect my tablet and smartphone to this new service, update my webmail bookmark and empty my email inbox, there was not much I had to do.  So far, so good. I have not experienced any challenges or performance issues.  A key reason is flash storage.

To be sure, virtualization is a great tool for improving physical server utilization and flexibility as well as reducing power, cooling and datacenter footprint costs.  That’s why the use of virtualization for email, databases and desktops is growing dramatically. But virtualized servers are only as effective as the storage performance that supports them. If, as a datacenter manager, your clients cannot access their application data quickly or boot their virtual desktop in a reasonable time, your company’s productivity and client satisfaction can drop dramatically.

Today, applications most likely run on virtualized servers.  The upside of server virtualization is that a company can improve server utilization and run more applications on fewer physical servers.  This can reduce power consumption, make more efficient use of datacenter floor space and make it easier to configure servers and deploy applications. The cloud also helps streamline application development, allowing companies to more efficiently and cost effectively test software applications across a broad set of configurations and operating systems.

A heated dispute – storage contention
Once application testing is complete, a virtual server’s configuration and image can be put on a virtual shelf until they are needed again, freeing up memory, processing, storage and other resources on the physical server for new virtual servers with just a few keystrokes. But with virtualization and the cloud there can be downsides, like slow performance – especially storage performance.

When a number of virtual servers are all using the same physical storage, there can be infighting for storage capacity, generally known as storage contention.  These internecine battles can slow application response to a frustrating glacial pace and lead to issues like VDI Boot and Login Storm that can extend the time it takes for users to login to tens of minutes.

Flash helps alleviate slowdowns in storage performance
Here is where flash comes to the rescue. New flash storage solutions are being deployed to help improve virtualized storage performance and alleviate productivity-sapping slowdowns caused by VDI Boot and Login Storm — the crush of end users booting up or logging in within a small window that overwhelms the server with data requests and degrades response times. Flash can be used as primary storage inside servers running virtual machines to dramatically speed storage response time. Flash can also be deployed as an intelligent cache for DAS- or SAN-connected storage and even as an external shared storage pool.

It’s clear that virtualization will require higher storage performance and better, more cost-effective ways to deploy flash storage. But how much flash you need depends on your particular virtualization challenge, configuration and of course budget: while flash storage is extremely fast, it is costlier than disk-based storage. So choosing the right storage acceleration solution – one is LSI® Nytro™ Application Acceleration – can be as important as choosing the right cloud provider for your company’s email.

While my email is now stored in the cloud in Timbuktu, I know the flash storage solutions in that datacenter help keep my mail quickly accessible 24/7 whether I access it from my computer, tablet or smartphone, giving my productivity a boost. I can be assured that every action item I am sent will quickly make it to my inbox and be added to my ever-growing to-do list. Now my next big challenge is to improve my own response performance to those email requests!

 

Tags: , , , , , , , , ,
Views: (3680)