Customer dilemma: I just purchased PCIe® flash cards to increase performance of my enterprise applications that run on Linux® and Unix®. How do I set them up to get the best performance?

Good question. I wish there were a simple answer but each environment is different. There is no cookie-cutter configuration that fits all, though a few questions will reveal how the PCIe flash cards should be configured for optimum performance.

Most of the popular relational and non-relational databases run on many different operating systems. I will be describing Linux-specific configurations, but most of them should also work with Unix systems that are supported by the PCIe flash card vendor. I’m a database guy, but these same principals and techniques that I’ll be covering apply to other applications like mail servers, web servers, application servers and, of course, databases.

Aligning PCIe flash devices
The most important step to perform on each PCIe flash card is to create a partition that is aligned on a specific boundary (such as 4k or 8k) so each read and write to the flash device will require only one physical input/output (IO) operation. If the card is not partitioned on such a boundary, then reads and writes will span the sector groups, which doubles the IO latency for each read or write request.

To align a partition, I use the sfdisk command to start a partition on a 1M boundary (sector 2048). Aligning to a 1M boundary resolves the dependency to align to a 4k, 8k, or even a 64k boundary. But before I do this, I need to know how I am going to use this device. Will this be a standalone partition? Part of a logical volume? Or part of a RAID group?

Which one is best?
If I were deploying the PCIe flash device for database caching (for example, the Oracle database has provided this caching functionality for years using the Database Smart Flash Cache feature, and Facebook created the open source Flashcache used in MySQL databases), I would use a single-partitioned PCIe flash card if I knew the capacity would meet my needs now and over the next 5 years. If I selected this configuration, the sfdisk command to create the partition would be:

echo “2048,,” | sfdisk –uS /dev/sdX –force

This single partitioning is also required with the Oracle® Automatic Storage Management system (ASM). Oracle has provided ASM for many years and I will go over how to use this storage feature in Part 3 of this series.

If I need to deploy multiple PCIe flash cards for database caching, I would create Logical Volume Manager (LVM) over all the flash devices to simplify administration. The sfdisk command to create a partition for each PCIe flash card would be:

echo “2048,,8e” | sfdisk –uS /dev/sdX –force

“8e” is the system partition type for creating a logical volume.

Neither of these solutions needs fault tolerance since they will be used for write-thru caching. My recent blog “How to optimize PCIe flash cards – a new approach to creating logical volumes” covers this process in detail.

If I want to use the PCIe flash card for persisting data, I would need to make the PCIe flash cards fault tolerant, using two or more cards to build the RAID array and eliminate any single point of failure. There are a number of ways to create a RAID over multiple PCIe flash cards, two of which are:

  • Use LVM with the RAID option.
  • Use the software RAID utility MDADM (multiple device administration) to create the RAID array.

But what type of RAID setup is best to use?
Oracle coined the term S.A.M.E. – Stripe And Mirror Everything – in 1999 and popularized the practice, which many database administrators (DBA) and storage administrators have followed ever since. I follow this practice and suggest you do the same.

First, you need to determine how these cards will be accessed:

  • Small random reads and writes
  • Larger sequential reads
  • Hybrid (mix of both)

In database deployments, your choice is usually among online transaction processing (OLTP) applications like airline and hotel reservation systems and corporate financial or enterprise resource planning (ERP) applications, or data warehouse/data mining/data analytics applications, or a mix of both environments. OLTP applications involve small random reads and writes as well as many sequential writes for log files. Data warehouse/data mining/data analytics applications involve mostly large sequential reads with very few sequential log writes.

Before setting up one or many PCIe flash cards in a RAID array either using LVM on RAID or creating a RAID array using MDADM, you need to know the access pattern of the IO, capacity requirements and budget. These requirements will dictate which RAID level will work best for your environment and fit your budget.

I would pick either a RAID 1/RAID 10 configuration (mirroring without striping, or striping and mirroring respectively), or RAID 5 (striping with parity). RAID 1/RAID 10 costs more but delivers the best performance, whereas RAID 5 costs less but imposes a significant write penalty.

Optimizing OLTP application performance
To optimize performance of an OLTP application, I would implement either a RAID 1 or RAID 10 array. If I were budget constrained, or implementing a data warehouse application, I would use a RAID 5 array. Normally a RAID 5 array will produce a higher throughput (megabits per second) appropriate for a data warehouse/data mining application.

In a nutshell, knowing how to tune the configuration to the application is key to reaping the best performance.

For either RAID array, you need to create an aligned partition using sfdisk:

echo “2048,,fd” | sfdisk –uS /dev/sdX –force

“fd” is the system identifier for a Linux RAID auto device.

Keep in mind that it is not mandatory to create a partition for LVMs or RAID arrays. Instead, you can assign RAW devices. It’s important to remember to align the sectors if combining RAW and partitioned devices or just creating a basic partition. It’s sound practice to always create an aligned partition when using PCIe flash cards.

At this point, aligned partitions have been created and are now ready to be used in LVMs or RAID arrays. Instructions for creating these are on the web or in Linux/Unix reference manuals. Here are a couple of websites that go over the process of creating LVM, RAID, or LVM on RAID:

https://raid.wiki.kernel.org/index.php/Partitioning_RAID_/_LVM_on_RAID
http://www.gagme.com/greg/linux/raid-lvm.php

Specifying a stripe width value
Also remember that, when creating LVMs with striping or RAID arrays, you’ll need to specify a stripe width value. Many years ago, Oracle and EMC conducted a number studies on this and concluded that a 1M stripe width performed the best as long as the database IO request was equal to or less than 1M. When implementing Oracle ASM, Oracle’s standard is to use 1M allocation units, which matches its coarse striping size of 1M.

Part 2 of this series will describe how to create RAW devices or file systems.

Part 3 of this series will describe how to use Oracle ASM when deploying PCIe flash cards.

Part 4 of this series will describe how to persist assignment to dynamically changing NWD/NMR devices.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (652)


It’s the start of the new year, and it’s traditional to make predictions – right? But predicting the future of the datacenter has been hard lately. There have been and continue to be so many changes in flight that possibilities spin off in different directions. Fractured visions through a kaleidoscope. Changes are happening in the businesses behind datacenters, the scale, the tasks and what is possible to accomplish, the value being monetized, and the architectures and technologies to enable all of these.

A few months ago I was asked to describe the datacenter in 2020 for some product planning purposes. Dave Vellante of Wikibon & John Furrier of SiliconANGLE asked me a similar question a few weeks ago. 2020 is out there – almost 7 years. It’s not easy to look into the crystal ball that far and figure out what the world will look like then, especially when we are in the midst of those tremendous changes. For some context I had to think back 7 years – what was the datacenter like then, and how profound have the changes been over the past 7 years?

And 7 years ago, our forefathers…
It was a very different world. Facebook barely existed, and had just barely passed the “university only” membership. Google was using Velcro, Amazon didn’t have its services, cloud was a non-existent term. In fact DAS (direct attach storage) was on the decline because everyone was moving to SAN/NAS. 10GE networking was in the future (1GE was still in growth mode). Linux was not nearly as widely accepted in enterprise – Amazon was in the vanguard of making it usable at scale (with Werner Vogels saying “it’s terrible, but it’s free, as in free beer”). Servers were individual – no “PODs,” and VMware was not standard practice yet. SATA drives were nowhere in datacenters.

An enterprise disk drive topped out at around 200GB in capacity. Nobody used the term petabyte. People, including me, were just starting to think about flash in datacenters, and it was several years later that solutions became available. Big data did not even exist. Not as a term or as a technology, definitely not Hadoop or graph search. In fact, Google’s seminal paper on MapReduce had just been published, and it would become the inspiration for Hadoop – something that would take many years before Yahoo picked it up and helped make it real.

Analytics were statistical and slow, and you had to be very explicitly looking for something. Advertising on the web was a modest business. Cold storage was tape or MAID, not vast pools of cheap disks in the cloud at absurdly low price points. None of the Chinese web-cloud guys existed… In truth, at LSI we had not even started looking at or getting to know the web datacenter guys. We assumed they just bought from OEMs…

No one streamed mainstream media – TV and movies – and there were no tablets to stream them to. YouTube had just been purchased by Google. Blu-ray was just getting started and competing with HD-DVD (which I foolishly bought 7 years ago), and integrated GPS’s in your car were a high-tech growth area. The iPhone or Android had not launched, Danger’s Sidekick was the cool phone, flip phones were mainstream, there was no App store or the billions of sales associated with that, and a mobile web browser was virtually useless.

Dell, IBM, and HP were the only real server companies that mattered, and the whole industry revolved around them, as well as EMC and NetApp for storage. Cisco, Lenovo and Huawei were not server vendors. And Sun was still Sun.

7 years from now
So – 7 years from now? That’s hard to predict, so take this with a grain of salt… There are many ways things could play out, especially when global legal, privacy, energy, hazardous waste recycling, and data retention requirements come into play, not to mention random chaos and invention along the way.

Compute-centric to dataflow-centric
Major applications are changing (have changed) from compute-centric to dataflow architectures. That is big data. The result will probably be a decline in the influence of processor vendors, and the increased focus on storage, network and memory, and optimized rack-level architectures. A handful of hyperscale datacenters are leading the way, and dragging the rest of us along. These types of solutions are already being deployed in big enterprise for specialized use cases, and their adoption will only increase with time. In 7 years, the main deployment model will echo what hyperscale datacenters are doing today: disaggregated racks of compute, memory and storage resources.

The datacenter is now being viewed as a profit growth enabler, rather than a cost center. That implies more compute = more revenue. That changes the investment profile and the expectations for IT. It will not be enough for enterprise IT departments to minimize change and risk because then they would be slowing revenue growth.

Customers and vendors
We are in the early stages of a customer revolt. Whether it’s deserved or not is immaterial, though I believe it’s partially deserved. Large customers have decided (and I’m doing broad brush strokes here) that OEMs are charging them too much and adding “features” that add no value and burn power, that the service contracts are excessively expensive and that there is very poor management interoperability among OEM offerings – on purpose to maintain vendor lockin. The cost structures of public cloud platforms like Amazon are proof there is some merit to the argument. Management tools don’t scale well, and require a lot of admin intervention. ISVs are seen as no better. Sure the platforms and apps are valuable and critical, but they’re really expensive too, and in a few cases, open source solutions actually scale better (though ISVs are catching up quickly).

The result? We’re seeing a push to use whitebox solutions that are interoperable and simple. Open source solutions – both software and hardware – are gaining traction in spite of their problems. Just witness the latest Open Compute Summit and the adoption rate of Hadoop and OpenStack. In fact many large enterprises have a policy that’s pretty much – any new application needs to be written for open source platforms on scale-out infrastructure.

Those 3 OEMs are struggling. Dell, HP and IBM are selling more servers, but at a lower revenue. Or in the case of IBM – selling the business. They are trying to upsell storage systems to offset those lost margins, and they are trying to innovate and vertically integrate to compensate for the changes. In contrast we’re seeing a rapid increase planned from self-built, self-architected hyperscale datacenters, especially in China. To be fair – those pressures on price and supplier revenue are not necessarily good for our industry. As well, there are newer entrants like Huawei and Cisco taking a noticeable chunk of the market, as well as an impending growth of ISV and 3rd party full rack “shrink wrapped” systems. Everybody is joining the party.

Storage, cold storage and storage-class memory
Stepping further out on the limb, I believe (but who really knows) that by 2020 storage as we know is no longer shipping. SMB is hollowed out to the cloud – that is – why would any small business use anything but cloud services? The costs are too compelling. Cloud storage is stratified into 3 levels: storage-class memory, flash/NVM and cool/cold bulk disk storage. Cold storage is going to be a very, very important area. You need to save that data, but spend zero power, and zero $ on storing it. Just look at some of the radical ideas like Facebook’s Blu-ray jukebox to address that, which was masterminded by a guy I really like –  Gio Coglitore – and I am very glad is getting some rightful attention. (http://www.wired.com/wiredenterprise/2014/02/facebook-robots/)

I believe that pooled storage class memory is inevitable and will disrupt high-performance flash storage, probably beginning in 2016. My processor architect friends and I have been daydreaming about this since 2005. That disruption’s OK, because flash use will continue to grow, even as disk use grows. There is just too much data. I’ve seen one massive vendor’s data showing average servers are adding something like 0.2 hard disks per year and 0.1 SSDs per year – and that’s for the average server including diskless nodes that are usually the most common in hyperscale datacenters. So growth in spite of disruption and capacity growth.

Key/value:
Data will be pooled, and connected by fabric as distributed objects or key/value pairs, with erasure coding. In fact, Object store (key/value – whatever) may have “obsoleted” block storage. And the need for these larger objects will probably also obsolete file as we’re used to it. Sure disk drives may still be block based, though key/value gives rise to all sorts of interesting opportunities to support variable size structures, obscure small fault domains, and variable encryption/compression without wasting space on disk platters. I even suspect that disk drives as we know them will be morphing into cold store specialty products that physically look entirely different and are made from different materials – for a lot of reasons. 15K drives will be history, and 10K drives may too. In fact 2” drives may not make sense anymore as the laptop drive and 15K drive disappear and performance and density are satisfied by flash.

Enterprise becomes private cloud that is very similar structurally to hyperscale, but is simply in an internal facility. And SAN/NAS products as we know them will be starting on the long end of the tail as legacy support products. Sure new network based storage models are about to emerge, but they’re different and more aligned to key/value.

SoC servers
Rack-scale architectures will have taken over clustered deployments. That means pooled resources. Processing will be pools of single socket SoC servers enabling massive clusters, rather than lots of 2- socket servers. These SoCs might even be mobile device SoCs at some point or at least derived from that – the economics of scale and fast cadence of consumer SoCs will make that interesting, maybe even inevitable. After all, the current Apple A7 in the iphone 5S is a dual core, 64-bit V8 ARM at 1.4GHz and the whole iPhone costs as much as mainstream server processor chips. In a few years, an 8 or 16 core equivalent at 1.5GHz or 2GHz is not hard to imagine, and the cost structure should be excellent.

Rapidly evolving open source applications will have morphed into eventually consistent dataflow tasks. Or they will be emerging in-memory applications working on vast data structures in the pooled storage class memory at the rack or larger scale, which will add tremendous monetary value to businesses. Whatever the evolutionary paths – the challenge for the next 10 years is optimizing dataflow as the amount used continues to exponentially grow. After all – data has value in aggregate, so why would you throw anything away, even as the amount we generate increases?

Clusters will be autonomous. Really autonomous. As in a new term I love: “emergent.” It’s when you can start using big data analytics to monitor the datacenter, and make workload/management and data placement decisions in real time, automatically, and the datacenter begins to take on un-predicted characteristics. Deployment will be autonomous too. Power on a pod of resources, and it just starts working. Google does that already.

The network
Layer 2 datacenter network switches will either be disappearing or will have migrated to a radically different location in the rack hierarchy. There are many ways this can evolve. I’m not sure which one(s) will dominate, but I know it will look different. And it will have different bandwidth. 100G moving to 400G interconnect fabric over fiber.

So there you have it. Guaranteed correct…

Different applications and dataflow, different architectures, different processors, different storage, different fabrics. Probably even a re-alignment of vendors.

Predicting the future of the datacenter has not been easy. There have been, and are so many changes happening. The businesses behind them. The scale, the tasks and what is possible to accomplish, the value being monetized, and the architectures and technologies to enable all of these. But at least we have some idea what’s ahead. And it’s pretty different, and exciting.

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (893)


LSI’s Accelerating Innovation Summit in San Jose has given me a sneak peak of some solutions our partners are putting together to solve datacenter challenges. Such is the case with EMC’s ScaleIO business unit (EMC recently acquired ScaleIO), which has rolled out some nifty software that helps streamline VDI (Virtual Desktop Infrastructure) scaling.

As I shared in a previous blog, VDI deployments are growing like gangbusters. It’s easy to see why. The manageability and security benefits of virtualized desktop environment are tough to beat.  Deploying and supporting hundreds of desktops as VDI instances on a single server lets you centralize desktop management and security.  Another advantage is that patches, security updates, and hardware and software upgrades demand much less overhead. VDI also dramatically reduces the risk that desktop users will breach security by making it easier to prevent data from being copied onto portable media or sent externally.

Mass boots drag down VDI performance
But as with all new technologies, a number of performance challenges can crop up when you move to a virtual world.  In enterprise-scale deployments, VDI performance can suffer when the IT administrator attempts to boot all those desktops Monday morning or reboot after Patch Tuesday.  What’s more, VDI performance can drop significantly when users all log in in at the same time each morning. In addition, virtualized environments sometimes are unfriendly to slews of users trying to access files simultaneously, making them wait because of the heavy traffic load. One bottleneck often is legacy SAN-connected storage since file access requests are queued through a single storage controller.  And of course increasing the density of virtual desktops supported by a server can exacerbate the whole performance problem.

VDI’s are ripe for distributed storage, and the ScaleIO ECS (Elastic Converged Storage) software is a compelling solution, incorporating an elastic storage infrastructure that scales both capacity and performance with changing business requirements. The software pools local direct attached storage (DAS) on each server into a large storage repository. If desktops are moved between physical servers, or if a server fails, the datacenter’s existing high-speed network moves data to the local storage of the new server.

LSI Nytro and ScaleIO ECS software boost VDI session number, reduce costs
In an AIS demonstration, the ScaleIO ECS software leverages the application acceleration of the LSI® Nytro™ MegaRAID® card to significantly increase the number of VDI sessions the VDI server could support, reducing the cost of each VDI session by up to 33%. Better yet, application acceleration gives users shorter response times than they see on their laptops. By using the ScaleIO ECS software and Nytro MegaRAID card, customers get the benefits high-availability storage and intelligent flash acceleration at a more budget-friendly price point than comparable SAN-based solutions.

 

Tags: , , , , , , , ,
Views: (460)