Scroll to Top

Scaling compute power and storage in space-constrained datacenters is one of the top IT challenges of our time. With datacenters worldwide pressed to maximize both within the same floor space, the central challenge is increasing density.

At IBM we continue to design products that help businesses meet their most pressing IT requirements, whether it’s optimizing data analytics, data management, the fastest growing workloads such as social media and cloud delivery or, of course, increasing compute and storage density. Our technology partners are a crucial part of our work, and this week at AIS we are teaming with LSI to showcase our new high-density NeXtScale computing platform and x3650 M4 HD server. Both leverage LSI® SAS RAID controllers for data protection, and the x3650 M4 HD server features an integrated leading-edge LSI 12Gb/s SAS RAID controller.

IBM NeXtScale System

NeXtScale System – ideal for HPC, cloud service providers and Web 2.0
The NeXtScale System®, an economical addition to the IBM System® family, maximizes usable compute density by packing up to 84 x86-based systems and 2,016 processing cores into a standard 19-inch rack to enable seamless integration into existing infrastructures. The family also enables organizations of all sizes and budgets to start small and scale rapidly for growth. The NeXtScale System is an ideal high-density solution for high-performance computing (HPC), cloud service providers and Web 2.0.

IBM System x3650 M4 HD

The System x3650 M4 HD, IBM’s newest high-density storage server, is designed for data-intensive analytics or business-critical workloads. The 2U rack server supports up to 62% more drive bays than the System x3650 M4 platform, providing connections for up to 26 2.5-inch HDDs or SSDs. The server is powered by the Intel Xeon processor E5-2600 family and features up to 6 PCIe 3.0 slots and an onboard LSI 12Gb/s SAS RAID controller. This combination gives a big boost to data applications and cloud deployments by increasing the processing power, performance and data protection that are the lifeblood of these environments.

IBM dense storage solutions to help drive data management, cloud computing and big data strategies
Cloud computing and big data will continue to have a tremendous impact on the IT infrastructure and create data management challenges for businesses. At IBM, we think holistically about the needs of our customers and believe that our new line of dense storage solutions will help them design, develop and execute on their data management, cloud computing and big data strategies.

 

Tags: , , , , , , , , , , , , ,
Views: (7606)


With the much anticipated launch of 12gb/s SAS MegaRAID and 12Gb/s SAS expanders featuring DataBolt™ SAS bandwidth-aggregation technologies, LSI is taking the bold step of moving beyond traditional IO performance benchmarks like IOMeter to benchmarks that simulate real-world workloads.

In order to fully illustrate the actual benefit many IT administrators can realize using 12Gb/s SAS MegaRAID products on their new server platforms, LSI is demonstrating application benchmarks on top of actual enterprise applications at AIS.

For our end-to-end 12Gb/s SAS MegaRAID demonstration, we chose Benchmark Factory® for Databases running on a MySQL Database. Benchmark Factor, a database performance testing tool that allows you to conduct database workload replay, industry-standard benchmark testing and scalability testing, uses real database application workloads such as TPC-C, TPC-E and TPC-H. We chose the TPC-H benchmark, a decision-support benchmark, because of its large streaming query profile. TPC-H shows the performance of decision support systems – which examine large volumes of data to simplify the analysis of information for business decisions – making it an excellent benchmark to showcase 12Gb/s SAS MegaRAID technology and its ability to maximize the bandwidth of PCIe 3.0 platforms, compared to 6Gb/s SAS.

LSI MegaRAID SAS 9361-8i storage performance on display using Spotlight® on MySQL, which is monitoring the data traffic across Intel’s new R2216GZ4GC server based on the new Intel® Xeon® processor E5-2600 v2.

The demo uses the latest Intel R2216GZ4GC servers based on the new Intel® Xeon® processor E5-2600 v2 product family to illustrate how 12Gb/s SAS MegaRAID solutions are needed to take advantage of the bandwidth capabilities of PCIe® 3.0 bus technology.

When the benchmarks are run side-by-side on the two platforms, you can quickly see how much faster data transfer rates are executed, and how much more efficiently the Intel servers handles data traffic. We used Quest Software’s Spotlight® on MySQL tool to monitor and measure data traffic from end storage devices to the clients running the database queries. More importantly, the test also illustrates how many more user queries the 12Gb/s SAS-based system can handle before complete resource saturation – 60 percent more than 6Gb/s SAS in this demonstration.

What does this mean to IT administrators? Clearly, resourse utilization is much higher,  improving total cost of ownership (TCO) with their database server. Or, conversley, 12Gb/s SAS can reduce cost per IO since fewer drives can be used with the server to deliver the same performance as the previous 6Gb/s SAS generation of storage infrastructure.

Tags: , , , , , , , , , , , , ,
Views: (959)


The world according to DAS

by

You might be surprised to find out how big the infrastructure for cloud and Web 2.0 is. It is mind-blowing. Microsoft has acknowledged packing more than 1 million servers into its datacenters, and by some accounts that is fewer than Google’s massive server count but a bit more than Amazon.  

Facebook’s server count is said to have skyrocketed from 30,000 in 2012 to 180,000 just this past August, serving 900 million plus users. And the social media giant is even putting its considerable weight behind the Open Compute effort to make servers fit better in a rack and draw less power. The list of mega infrastructures also includes Tencent, Baidu and Alibaba and the roster goes on and on.

Even more jaw-dropping is that almost 99.9% of these hyperscale infrastructures are built with servers featuring direct-attached storage. That’s right – they do the computing and store the data. In other words, no special, dedicated storage gear. Yes, your Facebook photos, your Skydrive personal cloud and all the content you use for entertainment, on-demand video and gaming data are stored inside the server.

Direct-attached storage reigns supreme
Everything in these infrastructures – compute and storage – is built out of x-86 based servers with storage inside. What’s more, growth of direct-attached storage is many folds bigger than any other storage deployments in IT. Rising deployments of cloud, or cloud-like, architectures are behind much of this expansion.

The prevalence of direct-attached storage is not unique to hyperscale deployments. Large IT organizations are looking to reap the rewards of creating similar on-premise infrastructures. The benefits are impressive: Build one kind of infrastructure (server racks), host anything you want (any of your properties), and scale if you need to very easily. TCO is much less than infrastructures relying on network storage or SANs.

With direct-attached you no longer need dedicated appliances for your database tier, your email tier, your analytics tier, your EDA tier. All of that can be hosted on scalable, share-nothing infrastructure. And just as with hyperscale, the storage is all in the server. No SAN storage required.

Open Compute, OpenStack and software-defined storage drive DAS growth
Open Compute is part of the picture. A recent Open Compute show I attended was mostly sponsored by hyperscale customers/suppliers. Many big-bank IT folks attended. Open Compute isn’t the only initiative driving growing deployments of direct-attached storage. So is software-defined storage and OpenStack. Big application vendors such as Oracle, Microsoft, VMware and SAP are also on board, providing solutions that support server-based storage/compute platforms that are easy and cost-effective to deploy, maintain and scale and need no external storage (or SAN including all-flash arrays).

So if you are a network-storage or SAN manufacturer, you have to be doing some serious thinking (many have already) about how you’re going to catch and ride this huge wave of growth.

 

 

 

Tags: , , , , , , , , , , , , , , , ,
Views: (2038)