Have you ever run out of gas in your car? Do you often risk running your gas tank dry? Hopefully you are more cautious than that and you start searching for a gas station when you get down to a ¼ tank. You do this because you want plenty of cushion in case something comes up that prevents you from getting to a station before it is too late.

The reason most people stretch their tank is to maximize travel between station visits. The downside to pushing the envelope to “E” is you can end up stranded with a dead vehicle waiting for AAA to bring you some gas.

Now most people know you don’t put gas in a solid state drive (SSD), but the pros and cons associated with how much you leave in the “tank” is very relevant to SSDs.

To understand how these two seemingly unrelated technologies are similar, we first need to drill into some technical SSD details. To start, SSDs act, and often look, like traditional hard disk drives (HDDs), but they do not record data in the same way. SSDs today typically use NAND flash memory to store data and a flash controller to connect the memory with the host computer. The flash controller can write a page of data (often 4,096 bytes) directly to the flash memory, but cannot overwrite the same page of data without first erasing it. The erase cycle cannot expunge only a single page. Instead, it erases a whole block of data (usually 128 pages). Because the stored data is sometimes updated randomly across the flash, the erase cycle for NAND flash requires a process called garbage collection.

Garbage collection is just dumping the trash
Garbage collection starts when a flash block is full of data, usually a mix of valid (good) and invalid (older, replaced) data. The invalid data must be tossed out to make room for new data, so the flash controller copies the valid data of a flash block to a previously erased block, and skips copying the invalid data of that block. The final step is to erase the original whole block, preparing it for new data to be written.

Before and during garbage collection, some data – valid data copied during garbage collection and the (typically) multiple copies of the invalid data – is in two or more locations at once, a phenomenon known as write amplification. To store this extra data not counted by the operating system, the flash controller needs some spare capacity beyond what the operating system knows. This is called over-provisioning (OP), and it is a critical part of every NAND flash-based SSD.

Over-provisioning is like the gas that remains in your tank
While every SSD has some amount of OP, some will have more or less than others. The amount of OP varies depending on trade-offs made between total storage capacity and benefits in performance and endurance. The less OP allocated in an SSD, the more information a user can store. This is like the driver who will take their tank of gas clear down to near-empty just to maximize the total number of miles between station visits.

What many SSD users don’t realize is there are major benefits to NOT stretching this OP area too thin. When you allocate more space for OP, you achieve a lower write amplification, which translates to a higher performance during writes and longer endurance of the flash memory. This is like the driver who is more cautious and visits the gas station more often to enable greater flexibility in selecting a more cost-effective station, and allows for last-minute deviations in travel plans that end up burning more fuel than originally anticipated.

The choice is yours
Most SSD users do not realize they have full control of how much OP is configured in their SSD. So even if you buy an SSD with “0%” OP, you can dedicate some of the user space back to OP for the SSD.

A more detailed presentation of how OP works and what 0% OP really means was presented at the Flash Memory Summit 2012 and can be viewed with this link for your convenience: http://www.lsi.com/downloads/Public/Flash%20Storage%20Processors/LSI_PRS_FMS2012_TE21_Smith.pdf

It pays to be the cautious driver who fills the gas tank long before you get to empty. When it comes to both performance and endurance, your SSD will cover a lot more ground if you treat the over-provisioning space the same way – keeping more in reserve.

Tags: , , , , , , , , , ,
Views: (23227)