I was asked some interesting questions recently by CEO & CIO, a Chinese business magazine. The questions ranged from how Chinese Internet giants like Alibaba, Baidu and Tencent differ from other customers and what leading technologies big Internet companies have created to questions about emerging technologies such as software-defined storage (SDS) and software-defined datacenters (SDDC) and changes in the ecosystem of datacenter hardware, software and service providers. These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on.

I thought you might interested, so this blog, the first of a 3-part series covering the interview, shares details of the first two questions.

CEO & CIO: In recent years, Internet companies have built ultra large-scale datacenters. Compared with traditional enterprises, they also take the lead in developing datacenter technology. From an industry perspective, what are the three leading technologies of ultra large-scale Internet data centers in your opinion? Please describe them.

There are so many innovations and important contributions to the industry from these hyperscale datacenters in hardware, software and mechanical engineering. To choose three is difficult. While I would prefer to choose hardware innovations as their big ones, I would suggest the following as they have changed our world and our industry and are changing our hardware and businesses:

Autonomous behavior and orchestration
An architect at Microsoft once told me, “If we had to hire admins for our datacenter in a normal enterprise way, we would hire all the IT admins in the world, and still not have enough.” There are now around 1 million servers in Microsoft datacenters. Hyperscale datacenters have had to develop autonomous, self-managing, sometimes self-deploying datacenter infrastructure simply to expand. They are pioneering datacenter technology for scale – innovating, learning by trial and error, and evolving their practices to drive more work/$. Their practices are specialized but beginning to be emulated by the broader IT industry. OpenStack is the best example of how that specialized knowledge and capability is being packaged and deployed broadly in the industry. At LSI, we’re working with both hyperscale and orchestration solutions to make better autonomous infrastructure.

High availability at datacenter level vs. machine level
As systems get bigger they have more components, more modes of failure and they get more complex and expensive to maintain reliability. As storage is used more, and more aggressively, drives tend to fail. They are simply being used more. And yet there is continued pressure to reduce costs and complexity. By the time hyperscale datacenters had evolved to massive scale – 100’s of thousands of servers in multiple datacenters – they had created solutions for absolute reliability, even as individual systems got less expensive, less complex and much less reliable. This is what has enabled the very low cost structures of the cloud, and made it a reliable resource.

These solutions are well timed too, as more enterprise organizations need to maintain on-premises data across multiple datacenters with absolute reliability. The traditional view that a single server requires 99.999% reliability is giving way to a more pragmatic view of maintaining high reliability at the macro level – across the entire datacenter. This approach accepts the failure of individual systems and components even as it maintains data center level reliability. Of course – there are currently operational issues with this approach. LSI has been working with hyperscale datacenters and OEMs to engineer improved operational efficiency and resilience, and minimized impact of individual component failure, while still relying on the datacenter high-availability (HA) layer for reliability.

Big data
It’s such an overused term. It’s difficult to believe the term barely existed a few years ago. The gift of Hadoop® to the industry – an open source attempt to copy Google® MapReduce and Google File System – has truly changed our world unbelievably quickly. Today, Hadoop and the other big data applications enable search, analytics, advertising, peta-scale reliable file systems, genomics research and more – even services like Apple® Siri run on Hadoop. Big data has changed the concept of analytics from statistical sampling to analysis of all data. And it has already enabled breakthroughs and changes in research, where relationships and patterns are looked for empirically, rather than based on theories.

Overall, I think big data has been one of the most transformational technologies this century. Big data has changed the focus from compute to storage as the primary enabler in the datacenter. Our embedded hard disk controllers, SAS (Serial Attached SCSI) host bus adaptors and RAID controllers have been at the heart of this evolution. The next evolutionary step in big data is the broad adoption of graph analysis, which integrates the relationship of data, not just the data itself.

CEO & CIO: Due to cloud computing, mobile connectivity and big data, the traditional IT ecosystem or industrial chain is changing. What are the three most important changes in LSI’s current cooperation with the ecosystem chain? How does LSI see the changes in the various links of the traditional ecosystem chain? What new links are worth attention? Please give some examples.

Cloud computing and the explosion of data driven by mobile devices and media has and continues to change our industry and ecosystem contributors dramatically. It’s true the enterprise market (customers, OEMs, technology, applications and use cases) has been pretty stable for 10-20 years, but as cloud computing has become a significant portion of the server market, it has increasingly affected ecosystem suppliers like LSI.

Timing: It’s no longer enough to follow Intel’s ticktock product roadmap. Development cycles for datacenter solutions used to be 3 to 5 years. But these cycles are becoming shorter. Now, demand for solutions is closer to 6 months – forcing hardware vendors to plan and execute to far tighter development cycles. Hyperscale datacenters also need to be able to expand resources very quickly, as customer demand dictates.  As a result they incorporate new architectures, solutions and specifications out of cycle with the traditional Intel roadmap changes. This has also disrupted the ecosystem.

End customers: Hyperscale datacenters now have purchasing power in the ecosystem, with single purchase orders sometimes amounting to 5% of the server market.  While OEMs still are incredibly important, they are not driving large-scale deployments or innovating and evolving nearly as fast. The result is more hyperscale design-win opportunities for component or sub-system vendors if they offer something unique or a real solution to an important problem. This also may shift profit pools away from OEMs to strong, nimble technology solution innovators. It also has the potential to reduce overall profit pools for the whole ecosystem, which is a potential threat to innovation speed and re-investment.

New players: Traditionally, a few OEMs and ISVs globally have owned most of the datacenter market. However, the supply chain of the hyperscale cloud companies has changed that. Leading datacenters have architected, specified or even built (in Google’s case) their own infrastructure, though many large cloud datacenters have been equipped with hyperscale-specific systems from Dell and HP. But more and more systems built exactly to datacenter specifications are coming from suppliers like Quanta. Newer network suppliers like Arista have increased market share. Some new hyperscale solution vendors have emerged, like Nebula. And software has shifted to open source, sometimes supported for-pay by companies copying the Redhat® Linux model – companies like Cloudera, Mirantis or United Stack. Personally, I am still waiting for the first 3rd-party hardware service emulating a Linux support and service company to appear.

Open initiatives: Yes, we’ve seen Hadoop and its derivatives deployed everywhere now – even in traditional industries like oil and gas, pharmacology, genomics, etc. And we’ve seen the emergence of open-source alternatives to traditional databases being deployed, like Casandra. But now we’re seeing new initiatives like Open Compute and OpenStack. Sure these are helpful to hyperscale datacenters, but they are also enabling smaller companies and universities to deploy hyperscale-like infrastructure and get the same kind of automated control, efficiency and cost structures that hyperscale datacenters enjoy. (Of course they don’t get fully there on any front, but it’s a lot closer). This trend has the potential to hurt OEM and ISV business models and markets and establish new entrants – even as we see Quanta, TYAN, Foxconn, Wistron and others tentatively entering the broader market through these open initiatives.

New architectures and new algorithms: There is a clear movement toward pooled resources (or rack scale architecture, or disaggregated servers). Developing pooled resource solutions has become a partnership between core IP providers like Intel and LSI with the largest hyperscale datacenter architects. Traditionally new architectures were driven by OEMs, but that is not so true anymore. We are seeing new technologies emerge to enable these rack-scale architectures (RSA) – technologies like silicon photonics, pooled storage, software-defined networks (SDN), and we will soon see pooled main memory and new nonvolatile main memories in the rack.

We are also seeing the first tries at new processor architectures about to enter the datacenter: ARM 64 for cool/cold storage and web tier and OpenPower P8 for high power processing – multithreaded, multi-issue, pooled memory processing monsters. This is exciting to watch. There is also an emerging interest in application acceleration: general-purposing computing on graphics processing units (GPGPUs), regular expression processors (regex) live stream analytics, etc. We are also seeing the first generation of graph analysis deployed at massive scale in real time.

Innovation: The pace of innovation appears to be accelerating, although maybe I’m just getting older. But the easy gains are done. On one hand, datacenters need exponentially more compute and storage, and they need to operate 10x to 1000x more quickly. On the other, memory, processor cores, disks and flash technologies are getting no faster. The only way to fill that gap is through innovation. So it’s no surprise there are lots of interesting things happening at OEMs and ISVs, chip and solution companies, as well as open source community and startups. This is what makes it such an interesting time and industry.

Consumption shifts: We are seeing a decline in laptop and personal computer shipments, a drop that naturally is reducing storage demand in those markets. Laptops are also seeing a shift to SSD from HDD. This has been good for LSI, as our footprint in laptop HDDs had been small, but our presence in laptop SSDs is very strong. Smart phones and tablets are driving more cloud content, traffic and reliance on cloud storage. We have seen a dramatic increase in large HDDs for cloud storage, a trend that seems to be picking up speed, and we believe the cloud HDD market will be very healthy and will see the emergence of new, cloud-specific HDDs that are radically different and specifically designed for cool and cold storage.

There is also an explosion of SSD and PCIe flash cards in cloud computing for databases, caches, low-latency access and virtual machine (VM) enablement. Many applications that we take for granted would not be possible without these extreme low-latency, high-capacity flash products. But very few companies can make a viable storage system from flash at an acceptable cost, opening up an opportunity for many startups to experiment with different solutions.

Summary: So I believe the biggest hyperscale innovations are autonomous behavior and orchestration, HA at the datacenter level vs. machine level, and big data. These are radically changing the whole industry. And what are those changes for our industry and ecosystem? You name it: timing, end customers, new players, open initiatives, new architectures and algorithms, innovation, and consumption patterns. All that’s staying the same are legacy products and solutions.

These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on. Great questions.

Restructuring the datacenter ecosystem (Part 2)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (688)


Turn on your smart phone and it works like charm. But explosive global adoption of smart phones with feature-rich applications is stressing mobile networks like never before. For mobile network providers, the challenge couldn’t be more acute: Find new ways to deliver more mobile bandwidth even as the average revenue per user remains flat.

In this AIS interview, LSI’s Jeff Connell, director of mobile networking product marketing, talks about how network providers are turning to heterogenous networks (HetNets) to reduce the cost of deploying, scaling and managing mobile networks. One way network providers are streamlining deployments is by using equipment built with smart silicon like LSI Axxia. The highly integrated ASIC helps customers cut the cost and power of new network equipment designs.

Reducing network latency
Speed is the currency of smart phone communications. Users want their information without delays. Here, Jon Devlin, director of networking ecosystem at LSI, discusses the importance of reducing network latency for applications including mobile video conferencing and voice over IP.

 

Tags: , , , , , , , ,
Views: (504)


The lifeblood of any online retailer is the speed of its IT infrastructure. Shoppers aren’t infinitely patient. Sluggish infrastructure performance can make shoppers wait precious seconds longer than they can stand, sending them fleeing to other sites for a faster purchase. Our federal government’s halting rollout of the Health Insurance Marketplace website is a glaring example of what can happen when IT infrastructure isn’t solid. A few bad user experiences that go viral can be damaging enough. Tens of thousands can be crippling.  

In hyperscale datacenters, any number of problems including network issues, insufficient scaling and inconsistent management can undermine end users’ experience. But one that hits home for me is the impact of slow storage on the performance of databases, where the data sits. With the database at the heart of all those online transactions, retailers can ill afford to have their tier of database servers operating at anything less than peak performance.

Slow storage undermines database performance
Typically, Web 2.0 and e-commerce companies run relational databases (RDBs) on these massive server-centric infrastructures. (Take a look at my blog last week to get a feel for the size of these hyperscale datacenter infrastructures). If you are running that many servers to support millions of users, you are likely using some kind of open-sourced RDB such as MySQL or other variations. Keep in mind that Oracle 11gR2 likely retails around $30K per core but MSQL is free. But the performance of both, and most other relational databases, suffer immensely when transactions are retrieving data from storage (or disk). You can only throw so much RAM and CPU power at the performance problem … sooner rather than later you have to deal with slow storage.

Almost everyone in industry – Web 2.0, cloud, hyperscale and other providers of massive database infrastructures – is lining up to solve this problem the best way they can. How? By deploying flash as the sole storage for database servers and applications. But is low-latency flash enough? For sheer performance it beats rotational disk hands down. But … even flash storage has its limitations, most notably when you are trying to drive ultra-low latencies for write IOs. Most IO accesses by RDBs, which do the transactional processing, are a mix or read/writes to the storage. Specifically, the mix is 70%/30% reads/writes. These are also typically low q-depth accesses (less than 4). It is those writes that can really slow things down.

PCIe flash reduces write latencies
The good news is that the right PCIe flash technology in the mix can solve the slowdowns. Some interesting PCIe flash technologies designed to tackle this latency problem are on display at AIS this week. DRAM and in particular NVDRAM are being deployed as a tier in front of flash to really tackle those nasty write latencies.

Among other demos, we’re showing how a Nytro™ 6000 series PCIe flash card helps solve the MySQL database performance issues. The typical response time for a small data read (this is what the database will see for a Database IO) from an HDD is 5ms. Flash-based devices such as the Nytro WarpDrive® card can complete the same read in less than 50μs on average during testing, an improvement of several orders-of-magnitude in response time. This response time translates to getting much higher transactions out of the same infrastructure – but with less space (flash is denser) and a lot less power (flash consumes a lot lower power than HDDs).

We’re also showing the Nytro 7000 series PCIe flash cards. They reach even lower write latencies than the 6000 series and very low q-depths.  The 7000 series cards also provide DRAM buffering while maintaining data-integrity even in the event of a power loss.

For online retailers and other businesses, higher database speeds mean more than just faster transactions. They can help keep those cash registers ringing.

Tags: , , , , , , , , , , , , , , , , , , , ,
Views: (838)


The United Nations finding that mobile broadband subscriptions are surging in developing countries, reported by The New York Times on Sept. 26, is no surprise. Equally unsurprising, the growing number of users, density of users and increasing bandwidth needs of applications likely are continuing to strain existing wireless networks and per-user bandwidths not only in developing countries but worldwide.

But rising pressure on bandwidth, coupled with increasingly data-intensive applications, isn’t the whole story. Minimizing end-to-end latency – from user to network base station and back again – is crucial in enabling banking, e-commerce, enterprise and other important business applications. Why? The greater the latency, the more likely visitors are to lose interest if the responsiveness of the website is sluggish. A connection may have plenty of throughput over a period of time, but response time determines the user experience.

The bandwidth-per-user and end-to-end network latency constraints are bound to drive changes both to the front haul and backhaul access networks. LTE and WiFi seem to be clear winners for the front haul network (replacing wired LAN technologies). On the backhaul, given the capacity needs, wired and wireless networks are bound to converge but will likely offer many options that will continue to co-exist like LTE, Fiber, Cable, xDSL and Microwave.

For our part, LSI has deep experience building mission-critical networks for service providers and datacenters – an expertise that has been brought to bear on the development of LSI® Axxia® networking solutions. These smart chips help solve the latency problem by enabling reliable, deterministic network performance to, ultimately, quicken response times and improve the user experience.

And that, after all, is just what network providers and users are after as mobile devices continue to support more applications and rising performance expectations worldwide.

Tags: , , , , , , , , ,
Views: (899)


I want to warn you, there is some thick background information here first. But don’t worry. I’ll get to the meat of the topic and that’s this: Ultimately, I think that PCIe® cards will evolve to more external, rack-level, pooled flash solutions, without sacrificing all their great attributes today. This is just my opinion, but other leaders in flash are going down this path too…

I’ve been working on enterprise flash storage since 2007 – mulling over how to make it work. Endurance, capacity, cost, performance have all been concerns that have been grappled with. Of course the flash is changing too as the nodes change: 60nm, 50nm, 35nm, 24nm, 20nm… and single level cell (SLC) to multi level cell (MLC) to triple level cell (TLC) and all the variants of these “trimmed” for specific use cases. The spec “endurance” has gone from 1 million program/erase cycles (PE) to 3,000, and in some cases 500.

It’s worth pointing out that almost all the “magic” that has been developed around flash was already scoped out in 2007. It just takes a while for a whole new industry to mature. Individual die capacity increased, meaning fewer die are needed for a solution – and that means less parallel bandwidth for data transfer… And the “requirement” for state-of-the-art single operation write latency has fallen well below the write latency of the flash itself. (What the ?? Yea – talk about that later in some other blog. But flash is ~1500uS write latency, where state of the art flash cards are ~50uS.) When I describe the state of technology it sounds pretty pessimistic.  I’m not. We’ve overcome a lot.

We built our first PCIe card solution at LSI in 2009. It wasn’t perfect, but it was better than anything else out there in many ways. We’ve learned a lot in the years since – both from making them, and from dealing with customer and users – about our own solutions and our competitors.  We’re lucky to be an important player in storage, so in general the big OEMs, large enterprises and the hyperscale datacenters all want to talk with us – not just about what we have or can sell, but what we could have and what we could do. They’re generous enough to share what works and what doesn’t. What the values of solutions are and what the pitfalls are too. Honestly? It’s the hyperscale datacenters in the lead both practically and in vision.

If you haven’t  nodded off to sleep yet, that’s a long-winded way of saying – things have changed fast, and, boy, we’ve learned a lot in just a few years.

Most important thing we’ve learned…
Most importantly, we’ve learned it’s latency that matters. No one is pushing the IOPs limits of flash, and no one is pushing the bandwidth limits of flash. But they sure are pushing the latency limits.

PCIe cards are great, but…
We’ve gotten lots of feedback, and one of the biggest things we’ve learned is – PCIe flash cards are awesome. They radically change performance profiles of most applications, especially databases allowing servers to run efficiently and actual work done by that server to multiply 4x to 10x (and in a few extreme cases 100x). So the feedback we get from large users is “PCIe cards are fantastic. We’re so thankful they came along. But…” There’s always a “but,” right??

It tends to be a pretty long list of frustrations, and they differ depending on the type of datacenter using them. We’re not the only ones hearing it. To be clear, none of these are stopping people from deploying PCIe flash… the attraction is just too compelling. But the problems are real, and they have real implications, and the market is asking for real solutions.

  • Stranded capacity & IOPs
    • Some “leftover” space is always needed in a PCIe card. Databases don’t do well when they run out of storage! But you still pay for that unused capacity.
    • All the IOPs and bandwidth are rarely used – sure latency is met, but there is capability left on the table.
    • Not enough capacity on a card – It’s hard to figure out how much flash a server/application will need. But there is no flexibility. If my working set goes one byte over the card capacity, well, that’s a problem.
  • Stranded data on server fail
    • If a server fails – all that valuable hot data is unavailable. Worse – it all needs to be re-constructed when the server does come online because it will be stale. It takes quite a while to rebuild 2TBytes of interesting data. Hours to days.
  • PCIe flash storage is a separate storage domain vs. disks and boot.
    • Have to explicitly manage LUNs, move data to make it hot.
    • Often have to manage via different API’s and management portals.
    • Applications may even have to be re-written to use different APIs, depending on the vendor.
  • Depending on the vendor, performance doesn’t scale.
    • One card gives awesome performance improvement. Two cards don’t  give quite the same improvement.
    • Three or four cards don’t give any improvement at all. Performance maxed out somewhere below 2 cards.  It turns out drivers and server onloaded code create resource bottlenecks, but this is more a competitor’s problem than ours.
  • Depending on the vendor, performance sags over time.
    • More and more computation (latency)  is needed in the server as flash wears and needs more error correction.
    • This is more a competitor’s problem than ours.
  • It’s hard to get cards in servers.
    • A PCIe card is a card – right? Not really. Getting a high capacity card in a half height, half length PCIe form factor is tough, but doable. However, running that card has problems.
    • It may need more than 25W of power  to run at full performance – the slot may or may not provide it. Flash burns power proportionately to activity, and writes/erases are especially intense on power. It’s really hard to remove more than 25W air cooling in a slot.
    • The air is preheated, or the slot doesn’t get good airflow. It ends up being a server by server/slot by slot qualification process. (yes, slot by slot…) As trivial as this sounds, it’s actually one of the biggest problems

Of course, everyone wants these fixed without affecting single operation latency, or increasing cost, etc. That’s what we’re here for though – right? Solve the impossible?

A quick summary is in order. It’s not looking good. For a given solution, flash is getting less reliable, there is less bandwidth available at capacity because there are fewer die, we’re driving latency way below the actual write latency of flash, and we’re not satisfied with the best solutions we have for all the reasons above.

The implications
If you think these through enough, you start to consider one basic path. It also turns out we’re not the only ones realizing this. Where will PCIe flash solutions evolve over the next 2, 3, 4 years? The basic goals are:

  • Unified storage infrastructure for boot, flash, and HDDs
  • Pooling of storage so that resources can be allocated/shared
  • Low latency, high performance as if those resources were DAS attached, or PCIe card flash
  • Bonus points for file store with a global name space

One easy answer would be – that’s a flash SAN or NAS. But that’s not the answer. Not many customers want a flash SAN or NAS – not for their new infrastructure, but more importantly, all the data is at the wrong end of the straw. The poor server is left sucking hard. Remember – this is flash, and people use flash for latency. Today these SAN type of flash devices have 4x-10x worse latency than PCIe cards. Ouch. You have to suck the data through a relatively low bandwidth interconnect, after passing through both the storage and network stacks. And there is interaction between the I/O threads of various servers and applications – you have to wait in line for that resource. It’s true there is a lot of startup energy in this space.  It seems to make sense if you’re a startup, because SAN/NAS is what people use today, and there’s lots of money spent in that market today. However, it’s not what the market is asking for.

Another easy answer is NVMe SSDs. Right? Everyone wants them – right? Well, OEMs at least. Front bay PCIe SSDs (HDD form factor or NVMe – lots of names) that crowd out your disk drive bays. But they don’t fix the problems. The extra mechanicals and form factor are more expensive, and just make replacing the cards every 5 years a few minutes faster. Wow. With NVME SSDs, you can fit fewer HDDs – not good. They also provide uniformly bad cooling, and hard limit power to 9W or 25W per device. But to protect the storage in these devices, you need to have enough of them that you can RAID or otherwise protect. Once you have enough of those for protection, they give you awesome capacity, IOPs and bandwidth, too much in fact, but that’s not what applications need – they need low latency for the working set of data.

What do I think the PCIe replacement solutions in the near future will look like? You need to pool the flash across servers (to optimize bandwidth and resource usage, and allocate appropriate capacity). You need to protect against failures/errors and limit the span of failure,  commit writes at very low latency (lower than native flash) and maintain low latency, bottleneck-free physical links to each server… To me that implies:

    • Small enclosure per rack handling ~32 or more servers
    • Enclosure manages temperature and cooling optimally for performance/endurance
    • Remote configuration/management of the resources allocated to each server
    • Ability to re-assign resources from one server to another in the event of server/VM blue-screen
    • Low-latency/high-bandwidth physical cable or backplane from each server to the enclosure
    • Replaceable inexpensive flash modules in case of failure
    • Protection across all modules (erasure coding) to allow continuous operation at very high bandwidth
    • NV memory to commit writes with extremely low latency
    • Ultimately – integrated with the whole storage architecture at the rack, the same APIs, drivers, etc.

That means the performance looks exactly as if each server had multiple PCIe cards. But the capacity and bandwidth resources are shared, and systems can remain resilient. So ultimately, I think that PCIe cards will evolve to more external, rack level, pooled flash solutions, without sacrificing all their great attributes today. This is just my opinion, but as I say – other leaders in flash are going down this path too…

What’s your opinion?

Tags: , , , , , , , , , , , , , , , ,
Views: (14700)