I was asked some interesting questions recently by CEO & CIO, a Chinese business magazine. The questions ranged from how Chinese Internet giants like Alibaba, Baidu and Tencent differ from other customers and what leading technologies big Internet companies have created to questions about emerging technologies such as software-defined storage (SDS) and software-defined datacenters (SDDC) and changes in the ecosystem of datacenter hardware, software and service providers. These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on.

I thought you might interested, so this blog, the first of a 3-part series covering the interview, shares details of the first two questions.

CEO & CIO: In recent years, Internet companies have built ultra large-scale datacenters. Compared with traditional enterprises, they also take the lead in developing datacenter technology. From an industry perspective, what are the three leading technologies of ultra large-scale Internet data centers in your opinion? Please describe them.

There are so many innovations and important contributions to the industry from these hyperscale datacenters in hardware, software and mechanical engineering. To choose three is difficult. While I would prefer to choose hardware innovations as their big ones, I would suggest the following as they have changed our world and our industry and are changing our hardware and businesses:

Autonomous behavior and orchestration
An architect at Microsoft once told me, “If we had to hire admins for our datacenter in a normal enterprise way, we would hire all the IT admins in the world, and still not have enough.” There are now around 1 million servers in Microsoft datacenters. Hyperscale datacenters have had to develop autonomous, self-managing, sometimes self-deploying datacenter infrastructure simply to expand. They are pioneering datacenter technology for scale – innovating, learning by trial and error, and evolving their practices to drive more work/$. Their practices are specialized but beginning to be emulated by the broader IT industry. OpenStack is the best example of how that specialized knowledge and capability is being packaged and deployed broadly in the industry. At LSI, we’re working with both hyperscale and orchestration solutions to make better autonomous infrastructure.

High availability at datacenter level vs. machine level
As systems get bigger they have more components, more modes of failure and they get more complex and expensive to maintain reliability. As storage is used more, and more aggressively, drives tend to fail. They are simply being used more. And yet there is continued pressure to reduce costs and complexity. By the time hyperscale datacenters had evolved to massive scale – 100’s of thousands of servers in multiple datacenters – they had created solutions for absolute reliability, even as individual systems got less expensive, less complex and much less reliable. This is what has enabled the very low cost structures of the cloud, and made it a reliable resource.

These solutions are well timed too, as more enterprise organizations need to maintain on-premises data across multiple datacenters with absolute reliability. The traditional view that a single server requires 99.999% reliability is giving way to a more pragmatic view of maintaining high reliability at the macro level – across the entire datacenter. This approach accepts the failure of individual systems and components even as it maintains data center level reliability. Of course – there are currently operational issues with this approach. LSI has been working with hyperscale datacenters and OEMs to engineer improved operational efficiency and resilience, and minimized impact of individual component failure, while still relying on the datacenter high-availability (HA) layer for reliability.

Big data
It’s such an overused term. It’s difficult to believe the term barely existed a few years ago. The gift of Hadoop® to the industry – an open source attempt to copy Google® MapReduce and Google File System – has truly changed our world unbelievably quickly. Today, Hadoop and the other big data applications enable search, analytics, advertising, peta-scale reliable file systems, genomics research and more – even services like Apple® Siri run on Hadoop. Big data has changed the concept of analytics from statistical sampling to analysis of all data. And it has already enabled breakthroughs and changes in research, where relationships and patterns are looked for empirically, rather than based on theories.

Overall, I think big data has been one of the most transformational technologies this century. Big data has changed the focus from compute to storage as the primary enabler in the datacenter. Our embedded hard disk controllers, SAS (Serial Attached SCSI) host bus adaptors and RAID controllers have been at the heart of this evolution. The next evolutionary step in big data is the broad adoption of graph analysis, which integrates the relationship of data, not just the data itself.

CEO & CIO: Due to cloud computing, mobile connectivity and big data, the traditional IT ecosystem or industrial chain is changing. What are the three most important changes in LSI’s current cooperation with the ecosystem chain? How does LSI see the changes in the various links of the traditional ecosystem chain? What new links are worth attention? Please give some examples.

Cloud computing and the explosion of data driven by mobile devices and media has and continues to change our industry and ecosystem contributors dramatically. It’s true the enterprise market (customers, OEMs, technology, applications and use cases) has been pretty stable for 10-20 years, but as cloud computing has become a significant portion of the server market, it has increasingly affected ecosystem suppliers like LSI.

Timing: It’s no longer enough to follow Intel’s ticktock product roadmap. Development cycles for datacenter solutions used to be 3 to 5 years. But these cycles are becoming shorter. Now, demand for solutions is closer to 6 months – forcing hardware vendors to plan and execute to far tighter development cycles. Hyperscale datacenters also need to be able to expand resources very quickly, as customer demand dictates.  As a result they incorporate new architectures, solutions and specifications out of cycle with the traditional Intel roadmap changes. This has also disrupted the ecosystem.

End customers: Hyperscale datacenters now have purchasing power in the ecosystem, with single purchase orders sometimes amounting to 5% of the server market.  While OEMs still are incredibly important, they are not driving large-scale deployments or innovating and evolving nearly as fast. The result is more hyperscale design-win opportunities for component or sub-system vendors if they offer something unique or a real solution to an important problem. This also may shift profit pools away from OEMs to strong, nimble technology solution innovators. It also has the potential to reduce overall profit pools for the whole ecosystem, which is a potential threat to innovation speed and re-investment.

New players: Traditionally, a few OEMs and ISVs globally have owned most of the datacenter market. However, the supply chain of the hyperscale cloud companies has changed that. Leading datacenters have architected, specified or even built (in Google’s case) their own infrastructure, though many large cloud datacenters have been equipped with hyperscale-specific systems from Dell and HP. But more and more systems built exactly to datacenter specifications are coming from suppliers like Quanta. Newer network suppliers like Arista have increased market share. Some new hyperscale solution vendors have emerged, like Nebula. And software has shifted to open source, sometimes supported for-pay by companies copying the Redhat® Linux model – companies like Cloudera, Mirantis or United Stack. Personally, I am still waiting for the first 3rd-party hardware service emulating a Linux support and service company to appear.

Open initiatives: Yes, we’ve seen Hadoop and its derivatives deployed everywhere now – even in traditional industries like oil and gas, pharmacology, genomics, etc. And we’ve seen the emergence of open-source alternatives to traditional databases being deployed, like Casandra. But now we’re seeing new initiatives like Open Compute and OpenStack. Sure these are helpful to hyperscale datacenters, but they are also enabling smaller companies and universities to deploy hyperscale-like infrastructure and get the same kind of automated control, efficiency and cost structures that hyperscale datacenters enjoy. (Of course they don’t get fully there on any front, but it’s a lot closer). This trend has the potential to hurt OEM and ISV business models and markets and establish new entrants – even as we see Quanta, TYAN, Foxconn, Wistron and others tentatively entering the broader market through these open initiatives.

New architectures and new algorithms: There is a clear movement toward pooled resources (or rack scale architecture, or disaggregated servers). Developing pooled resource solutions has become a partnership between core IP providers like Intel and LSI with the largest hyperscale datacenter architects. Traditionally new architectures were driven by OEMs, but that is not so true anymore. We are seeing new technologies emerge to enable these rack-scale architectures (RSA) – technologies like silicon photonics, pooled storage, software-defined networks (SDN), and we will soon see pooled main memory and new nonvolatile main memories in the rack.

We are also seeing the first tries at new processor architectures about to enter the datacenter: ARM 64 for cool/cold storage and web tier and OpenPower P8 for high power processing – multithreaded, multi-issue, pooled memory processing monsters. This is exciting to watch. There is also an emerging interest in application acceleration: general-purposing computing on graphics processing units (GPGPUs), regular expression processors (regex) live stream analytics, etc. We are also seeing the first generation of graph analysis deployed at massive scale in real time.

Innovation: The pace of innovation appears to be accelerating, although maybe I’m just getting older. But the easy gains are done. On one hand, datacenters need exponentially more compute and storage, and they need to operate 10x to 1000x more quickly. On the other, memory, processor cores, disks and flash technologies are getting no faster. The only way to fill that gap is through innovation. So it’s no surprise there are lots of interesting things happening at OEMs and ISVs, chip and solution companies, as well as open source community and startups. This is what makes it such an interesting time and industry.

Consumption shifts: We are seeing a decline in laptop and personal computer shipments, a drop that naturally is reducing storage demand in those markets. Laptops are also seeing a shift to SSD from HDD. This has been good for LSI, as our footprint in laptop HDDs had been small, but our presence in laptop SSDs is very strong. Smart phones and tablets are driving more cloud content, traffic and reliance on cloud storage. We have seen a dramatic increase in large HDDs for cloud storage, a trend that seems to be picking up speed, and we believe the cloud HDD market will be very healthy and will see the emergence of new, cloud-specific HDDs that are radically different and specifically designed for cool and cold storage.

There is also an explosion of SSD and PCIe flash cards in cloud computing for databases, caches, low-latency access and virtual machine (VM) enablement. Many applications that we take for granted would not be possible without these extreme low-latency, high-capacity flash products. But very few companies can make a viable storage system from flash at an acceptable cost, opening up an opportunity for many startups to experiment with different solutions.

Summary: So I believe the biggest hyperscale innovations are autonomous behavior and orchestration, HA at the datacenter level vs. machine level, and big data. These are radically changing the whole industry. And what are those changes for our industry and ecosystem? You name it: timing, end customers, new players, open initiatives, new architectures and algorithms, innovation, and consumption patterns. All that’s staying the same are legacy products and solutions.

These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on. Great questions.

Restructuring the datacenter ecosystem (Part 2)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (1431)


Last week at LSI’s annual Accelerating Innovation Summit (AIS) the company took the wraps off a vision that should lead its technical direction for the next few years.

The LSI keynote featured a video of three situations as they might evolve in the future:

  • A man falls from a bicycle in a foreign country and needs medical attention
  • A bullet train stops before hitting a tree that fell across its tracks
  • A hacker is prevented from accessing secure information using identity theft

I’ll focus on just one of these to show how LSI expects the future to develop.  In the bicycle accident scenario, a businessman falls to the ground while riding a bicycle in a foreign country.  Security cameras that have been upgraded to understand what they see notify an emergency services agency which sends an ambulance to the scene.  The paramedic performs a retinal scan on the victim, using it to retrieve his medical records, including his DNA sequence, from the web.

The businessman’s wearable body monitoring system also communicates with the paramedic’s instruments to share his vital signs.  All of this information is used by cloud-based computers to determine a course of action which, in the video, requires an injection that has been custom-tuned to the victim’s current situation, his medical history, and his genetic makeup.

That’s a pretty tall order, and it will require several advances in the state of the art, but LSI is using this and other scenarios to work with its clients and translate this vision into the products of the future.

What are the key requirements to make this happen? Talwalkar told the audience that we need to create a society that is supported by preventive, predictive and assisted analytics to move in a direction where the general welfare is assisted by all that the Internet and advanced computing have to offer.  Since data is growing at an exponential rate, he argued that this will require the instant retrieval of interlinked data objects at scale. Everything that is key to solving the task must be immediately available, and must be quickly analyzed to provide a solution to the problem at hand. The key will be the ability to process interlinked pieces of data that have not been previously structured to handle any particular situation.

To achieve this we will need larger-scale computing resources than are currently available, all closely interconnected, that all operate at very high speeds.  LSI hopes to tap into these needs through its strengths in networking and communications chips for the communications, its HDD and server and storage connectivity array chips and boards for large-scale data, and its flash controller memory and PCIe SSD expertise for high performance.

LSI brought to AIS several of the customers and partners it is working with using to develop these technologies. Speakers from Intel, Microsoft, IBM, Toshiba, Ericsson and others showed how they are working with LSI’s various technologies to improve the performance of their own systems.  On the exhibition floor booths from LSI and many of its clients demonstrated new technologies that performed everything from high-speed stock market analysis to fast flash management.

It’s pretty exciting to see a company that has a clear vision of its future and is committed to moving its entire ecosystem ahead to make that happen and help companies manage their business more effectively during what LSI calls the “Datacentric Era.” LSI has certainly put a lot of effort into creating a vision and determining where its talents can be brought to bear to improve our lives in the future.

Tags: , , , , , , , , , , , , , , , , , ,
Views: (2307)


The world according to DAS

by

You might be surprised to find out how big the infrastructure for cloud and Web 2.0 is. It is mind-blowing. Microsoft has acknowledged packing more than 1 million servers into its datacenters, and by some accounts that is fewer than Google’s massive server count but a bit more than Amazon.  

Facebook’s server count is said to have skyrocketed from 30,000 in 2012 to 180,000 just this past August, serving 900 million plus users. And the social media giant is even putting its considerable weight behind the Open Compute effort to make servers fit better in a rack and draw less power. The list of mega infrastructures also includes Tencent, Baidu and Alibaba and the roster goes on and on.

Even more jaw-dropping is that almost 99.9% of these hyperscale infrastructures are built with servers featuring direct-attached storage. That’s right – they do the computing and store the data. In other words, no special, dedicated storage gear. Yes, your Facebook photos, your Skydrive personal cloud and all the content you use for entertainment, on-demand video and gaming data are stored inside the server.

Direct-attached storage reigns supreme
Everything in these infrastructures – compute and storage – is built out of x-86 based servers with storage inside. What’s more, growth of direct-attached storage is many folds bigger than any other storage deployments in IT. Rising deployments of cloud, or cloud-like, architectures are behind much of this expansion.

The prevalence of direct-attached storage is not unique to hyperscale deployments. Large IT organizations are looking to reap the rewards of creating similar on-premise infrastructures. The benefits are impressive: Build one kind of infrastructure (server racks), host anything you want (any of your properties), and scale if you need to very easily. TCO is much less than infrastructures relying on network storage or SANs.

With direct-attached you no longer need dedicated appliances for your database tier, your email tier, your analytics tier, your EDA tier. All of that can be hosted on scalable, share-nothing infrastructure. And just as with hyperscale, the storage is all in the server. No SAN storage required.

Open Compute, OpenStack and software-defined storage drive DAS growth
Open Compute is part of the picture. A recent Open Compute show I attended was mostly sponsored by hyperscale customers/suppliers. Many big-bank IT folks attended. Open Compute isn’t the only initiative driving growing deployments of direct-attached storage. So is software-defined storage and OpenStack. Big application vendors such as Oracle, Microsoft, VMware and SAP are also on board, providing solutions that support server-based storage/compute platforms that are easy and cost-effective to deploy, maintain and scale and need no external storage (or SAN including all-flash arrays).

So if you are a network-storage or SAN manufacturer, you have to be doing some serious thinking (many have already) about how you’re going to catch and ride this huge wave of growth.

 

 

 

Tags: , , , , , , , , , , , , , , , ,
Views: (1886)


In preparation for the development of Windows Server® 2012, Microsoft polled customers and found that features that make high availability easier to configure and more affordable are critical. Little wonder. The features are pennies from heaven to the vast universe of smaller IT shops that often have found traditional high-availability solutions too expensive and difficult to install and maintain.

In a recent video, John Loveall, principal program manager for the Windows Server Division of Microsoft, discusses how Microsoft® Windows Server 2012 and the LSI® Syncro™ CS solution can make it easier for organizations of all sizes to deploy high availability.

While large organizations remain a vital proving ground for new breeds of computer gear, Loveall sees small businesses, branch offices and private cloud environments using high-availability systems as a window into the future of server technology.

Tags: , , , , ,
Views: (5466)


Walking the Great Wall before visits to some of China’s hyperscale datacenters

I’ve been travelling to China quite a bit over the last year or so. I’m sitting in Shenzhen right now (If you know Chinese internet companies, you’ll know who I’m visiting). The growth is staggering. I’ve had a bit of a trains, planes, automobiles experience this trip, and that’s exposed me to parts of China I never would have seen otherwise. Just to accommodate sheer population growth and the modest increase in wealth, there is construction everywhere – a press of people and energy, constant traffic jams, unending urban centers, and most everything is new. Very new. It must be exciting to be part of that explosive growth. What a market.  I mean – come on – there are 1.3 billion potential users in China.

The amazing thing for me is the rapid growth of hyperscale datacenters in China, which is truly exponential. Their infrastructure growth has been 200%-300% CAGR for the past few years. It’s also fantastic walking into a building in China, say Baidu, and feeling very much at home – just like you walked into Facebook or Google. It’s the same young vibe, energy, and ambition to change how the world does things. And it’s also the same pleasure – talking to architects who are super-sharp, have few technical prejudices, and have very little vanity – just a will to get to business and solve problems. Polite, but blunt. We’re lucky that they recognize LSI as a leader, and are willing to spend time to listen to our ideas, and to give us theirs.

Even their infrastructure has a similar feel to the US hyperscale datacenters. The same only different.  ;-)

Alibaba (top and bottom) and Baidu visitor badges

Profitability
A lot of these guys are growing revenue at 50% per year, several getting 50% gross margin. Those are nice numbers in any country. One has $100’s of billions in revenue.  And they’re starting to push out of China.  So far their pushes into Japan have not gone well, but other countries should be better. They all have unique business models. “We” in the US like to say things like “Alibaba is the Chinese eBay” or “Sina Weibo is the Chinese Twitter”…. But that’s not true – they all have more hybrid business models, unique, and so their datacenter goals, revenue and growth have a slightly different profile. And there are some very cool services that simply are not available elsewhere. (You listening Apple®, Google®, Twitter®, Facebook®?) But they are all expanding their services, products and user base. Interestingly, there is very little public cloud in China. So there are no real equivalents to Amazon’s services or Microsoft’s Azure. I have heard about current development of that kind of model with the government as initial customer. We’ll see how that goes.

Scale
100’s of thousands of servers. They’re not the scale of Google, but they sure are the scale of Facebook, Amazon, Microsoft…. It’s a serious market for an outfit like LSI. Really it’s a very similar scale now to the US market. Close to 1 million servers installed among the main 4 players, and exabytes of data (we’ve blown past mere petabytes). Interestingly, they still use many co-location facilities, but that will change. More important – they’re all planning to probably double their infrastructure in the next 1-2 years – they have to – their growth rates are crazy.

Platforms
Often 5 or 6 distinct platforms, just like the US hyperscale datacenters. Database platforms, storage platforms, analytics platforms, archival platforms, web server platforms…. But they tend to be a little more like a rack of traditional servers that enterprise buys with integrated disk bays, still a lot of 1G Ethernet, and they are still mostly from established OEMs. In fact I just ran into one OEM’s American GM, who I happen to know, in Tencent’s offices today. The typical servers have 12 HDDs in drive bays, though they are starting to look at SSDs as part of the storage platform. They do use PCIe® flash cards in some platforms, but the performance requirements are not as extreme as you might imagine. Reasonably low latency and consistent latency are the premium they are looking for from these flash cards – not maximum IOPs or bandwidth – very similar to their American counterparts. I think hyperscale datacenters are sophisticated in understanding what they need from flash, and not requiring more than that. Enterprise could learn a thing or two.

Some server platforms have RAIDed HDDs, but most are direct map drives using a high availability (HA) layer across the server center – Hadoop® HDFS or self-developed Hadoop like platforms. Some have also started to deploy microserver archival “bit buckets.” A small ARM® SoC with 4 HDDs totaling 12 TBytes of storage, giving densities like 72 TBytes of file storage in 2U of rack. While I can only find about 5,000 of those in China that are the first generation experiments, it’s the first of a growing wave of archival solutions based on lower performance ARM servers. The feedback is clear – they’re not perfect yet, but the writing is on the wall. (If you’re wondering about the math, that’s 5,000 x 12 TBytes = 60 Petabytes….)

Power
Yes, it’s important, but maybe more than we’re used to. It’s harder to get licenses for power in China. So it’s really important to stay within the envelope of power your datacenter has. You simply can’t get more. That means they have to deploy solutions that do more in the same power profile, especially as they move out of co-located datacenters into private ones. Annually, 50% more users supported, more storage capacity, more performance, more services, all in the same power. That’s not so easy. I would expect solar power in their future, just as Apple has done.

Scorpio
Here’s where it gets interesting. They are developing a cousin to OpenCompute that’s called Scorpio. It’s Tencent, Alibaba, Baidu, and China Telecom so far driving the standard.  The goals are similar to OpenCompute, but more aligned to standardized sub-systems that can be co-mingled from multiple vendors. There is some harmonization and coordination between OpenCompute and Scorpio, and in fact the Scorpio companies are members of OpenCompute. But where OpenCompute is trying to change the complete architecture of scale-out clusters, Scorpio is much more pragmatic – some would say less ambitious. They’ve finished version 1 and rolled out about 200 racks as a “test case” to learn from. Baidu was the guinea pig. That’s around 6,000 servers. They weren’t expecting more from version 1. They’re trying to learn. They’ve made mistakes, learned a lot, and are working on version 2.

Even if it’s not exciting, it will have an impact because of the sheer size of deployments these guys are getting ready to roll out in the next few years. They see the progression as 1) they were using standard equipment, 2) they’re experimenting and learning from trial runs of Scorpio versions 1 and 2, and then they’ll work on 3) new architectures that are efficient and powerful, and different.

Information is pretty sketchy if you are not one of the member companies or one of their direct vendors. We were just invited to join Scorpio by one of the founders, and would be the first group outside of China to do so. If that all works out, I’ll have a much better idea of the details, and hopefully can influence the standards to be better for these hyperscale datacenter applications. Between OpenCompute and Scorpio we’ll be seeing a major shift in the industry – a shift that will undoubtedly be disturbing to a lot of current players. It makes me nervous, even though I’m excited about it. One thing is sure – just as the server market volume is migrating from traditional enterprise to hyperscale datacenter (25-30% of the server market and growing quickly), we’re starting to see a migration to Chinese hyperscale datacenters from US-based ones. They have to grow just to stay still. I mean – come on – there are 1.3 billion potential users in China….

Tags: , , , , , , , , , , , , , , , , , , , , , ,
Views: (71309)