Scroll to Top

The lifeblood of any online retailer is the speed of its IT infrastructure. Shoppers aren’t infinitely patient. Sluggish infrastructure performance can make shoppers wait precious seconds longer than they can stand, sending them fleeing to other sites for a faster purchase. Our federal government’s halting rollout of the Health Insurance Marketplace website is a glaring example of what can happen when IT infrastructure isn’t solid. A few bad user experiences that go viral can be damaging enough. Tens of thousands can be crippling.  

In hyperscale datacenters, any number of problems including network issues, insufficient scaling and inconsistent management can undermine end users’ experience. But one that hits home for me is the impact of slow storage on the performance of databases, where the data sits. With the database at the heart of all those online transactions, retailers can ill afford to have their tier of database servers operating at anything less than peak performance.

Slow storage undermines database performance
Typically, Web 2.0 and e-commerce companies run relational databases (RDBs) on these massive server-centric infrastructures. (Take a look at my blog last week to get a feel for the size of these hyperscale datacenter infrastructures). If you are running that many servers to support millions of users, you are likely using some kind of open-sourced RDB such as MySQL or other variations. Keep in mind that Oracle 11gR2 likely retails around $30K per core but MSQL is free. But the performance of both, and most other relational databases, suffer immensely when transactions are retrieving data from storage (or disk). You can only throw so much RAM and CPU power at the performance problem … sooner rather than later you have to deal with slow storage.

Almost everyone in industry – Web 2.0, cloud, hyperscale and other providers of massive database infrastructures – is lining up to solve this problem the best way they can. How? By deploying flash as the sole storage for database servers and applications. But is low-latency flash enough? For sheer performance it beats rotational disk hands down. But … even flash storage has its limitations, most notably when you are trying to drive ultra-low latencies for write IOs. Most IO accesses by RDBs, which do the transactional processing, are a mix or read/writes to the storage. Specifically, the mix is 70%/30% reads/writes. These are also typically low q-depth accesses (less than 4). It is those writes that can really slow things down.

PCIe flash reduces write latencies
The good news is that the right PCIe flash technology in the mix can solve the slowdowns. Some interesting PCIe flash technologies designed to tackle this latency problem are on display at AIS this week. DRAM and in particular NVDRAM are being deployed as a tier in front of flash to really tackle those nasty write latencies.

Among other demos, we’re showing how a Nytro™ 6000 series PCIe flash card helps solve the MySQL database performance issues. The typical response time for a small data read (this is what the database will see for a Database IO) from an HDD is 5ms. Flash-based devices such as the Nytro WarpDrive® card can complete the same read in less than 50μs on average during testing, an improvement of several orders-of-magnitude in response time. This response time translates to getting much higher transactions out of the same infrastructure – but with less space (flash is denser) and a lot less power (flash consumes a lot lower power than HDDs).

We’re also showing the Nytro 7000 series PCIe flash cards. They reach even lower write latencies than the 6000 series and very low q-depths.  The 7000 series cards also provide DRAM buffering while maintaining data-integrity even in the event of a power loss.

For online retailers and other businesses, higher database speeds mean more than just faster transactions. They can help keep those cash registers ringing.

Tags: , , , , , , , , , , , , , , , , , , , ,
Views: (1062)