Scroll to Top

I was asked some interesting questions recently by CEO & CIO, a Chinese business magazine. The questions ranged from how Chinese Internet giants like Alibaba, Baidu and Tencent differ from other customers and what leading technologies big Internet companies have created to questions about emerging technologies such as software-defined storage (SDS) and software-defined datacenters (SDDC) and changes in the ecosystem of datacenter hardware, software and service providers. These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on.

I thought you might interested, so this blog, the first of a 3-part series covering the interview, shares details of the first two questions.

CEO & CIO: In recent years, Internet companies have built ultra large-scale datacenters. Compared with traditional enterprises, they also take the lead in developing datacenter technology. From an industry perspective, what are the three leading technologies of ultra large-scale Internet data centers in your opinion? Please describe them.

There are so many innovations and important contributions to the industry from these hyperscale datacenters in hardware, software and mechanical engineering. To choose three is difficult. While I would prefer to choose hardware innovations as their big ones, I would suggest the following as they have changed our world and our industry and are changing our hardware and businesses:

Autonomous behavior and orchestration
An architect at Microsoft once told me, “If we had to hire admins for our datacenter in a normal enterprise way, we would hire all the IT admins in the world, and still not have enough.” There are now around 1 million servers in Microsoft datacenters. Hyperscale datacenters have had to develop autonomous, self-managing, sometimes self-deploying datacenter infrastructure simply to expand. They are pioneering datacenter technology for scale – innovating, learning by trial and error, and evolving their practices to drive more work/$. Their practices are specialized but beginning to be emulated by the broader IT industry. OpenStack is the best example of how that specialized knowledge and capability is being packaged and deployed broadly in the industry. At LSI, we’re working with both hyperscale and orchestration solutions to make better autonomous infrastructure.

High availability at datacenter level vs. machine level
As systems get bigger they have more components, more modes of failure and they get more complex and expensive to maintain reliability. As storage is used more, and more aggressively, drives tend to fail. They are simply being used more. And yet there is continued pressure to reduce costs and complexity. By the time hyperscale datacenters had evolved to massive scale – 100’s of thousands of servers in multiple datacenters – they had created solutions for absolute reliability, even as individual systems got less expensive, less complex and much less reliable. This is what has enabled the very low cost structures of the cloud, and made it a reliable resource.

These solutions are well timed too, as more enterprise organizations need to maintain on-premises data across multiple datacenters with absolute reliability. The traditional view that a single server requires 99.999% reliability is giving way to a more pragmatic view of maintaining high reliability at the macro level – across the entire datacenter. This approach accepts the failure of individual systems and components even as it maintains data center level reliability. Of course – there are currently operational issues with this approach. LSI has been working with hyperscale datacenters and OEMs to engineer improved operational efficiency and resilience, and minimized impact of individual component failure, while still relying on the datacenter high-availability (HA) layer for reliability.

Big data
It’s such an overused term. It’s difficult to believe the term barely existed a few years ago. The gift of Hadoop® to the industry – an open source attempt to copy Google® MapReduce and Google File System – has truly changed our world unbelievably quickly. Today, Hadoop and the other big data applications enable search, analytics, advertising, peta-scale reliable file systems, genomics research and more – even services like Apple® Siri run on Hadoop. Big data has changed the concept of analytics from statistical sampling to analysis of all data. And it has already enabled breakthroughs and changes in research, where relationships and patterns are looked for empirically, rather than based on theories.

Overall, I think big data has been one of the most transformational technologies this century. Big data has changed the focus from compute to storage as the primary enabler in the datacenter. Our embedded hard disk controllers, SAS (Serial Attached SCSI) host bus adaptors and RAID controllers have been at the heart of this evolution. The next evolutionary step in big data is the broad adoption of graph analysis, which integrates the relationship of data, not just the data itself.

CEO & CIO: Due to cloud computing, mobile connectivity and big data, the traditional IT ecosystem or industrial chain is changing. What are the three most important changes in LSI’s current cooperation with the ecosystem chain? How does LSI see the changes in the various links of the traditional ecosystem chain? What new links are worth attention? Please give some examples.

Cloud computing and the explosion of data driven by mobile devices and media has and continues to change our industry and ecosystem contributors dramatically. It’s true the enterprise market (customers, OEMs, technology, applications and use cases) has been pretty stable for 10-20 years, but as cloud computing has become a significant portion of the server market, it has increasingly affected ecosystem suppliers like LSI.

Timing: It’s no longer enough to follow Intel’s ticktock product roadmap. Development cycles for datacenter solutions used to be 3 to 5 years. But these cycles are becoming shorter. Now, demand for solutions is closer to 6 months – forcing hardware vendors to plan and execute to far tighter development cycles. Hyperscale datacenters also need to be able to expand resources very quickly, as customer demand dictates.  As a result they incorporate new architectures, solutions and specifications out of cycle with the traditional Intel roadmap changes. This has also disrupted the ecosystem.

End customers: Hyperscale datacenters now have purchasing power in the ecosystem, with single purchase orders sometimes amounting to 5% of the server market.  While OEMs still are incredibly important, they are not driving large-scale deployments or innovating and evolving nearly as fast. The result is more hyperscale design-win opportunities for component or sub-system vendors if they offer something unique or a real solution to an important problem. This also may shift profit pools away from OEMs to strong, nimble technology solution innovators. It also has the potential to reduce overall profit pools for the whole ecosystem, which is a potential threat to innovation speed and re-investment.

New players: Traditionally, a few OEMs and ISVs globally have owned most of the datacenter market. However, the supply chain of the hyperscale cloud companies has changed that. Leading datacenters have architected, specified or even built (in Google’s case) their own infrastructure, though many large cloud datacenters have been equipped with hyperscale-specific systems from Dell and HP. But more and more systems built exactly to datacenter specifications are coming from suppliers like Quanta. Newer network suppliers like Arista have increased market share. Some new hyperscale solution vendors have emerged, like Nebula. And software has shifted to open source, sometimes supported for-pay by companies copying the Redhat® Linux model – companies like Cloudera, Mirantis or United Stack. Personally, I am still waiting for the first 3rd-party hardware service emulating a Linux support and service company to appear.

Open initiatives: Yes, we’ve seen Hadoop and its derivatives deployed everywhere now – even in traditional industries like oil and gas, pharmacology, genomics, etc. And we’ve seen the emergence of open-source alternatives to traditional databases being deployed, like Casandra. But now we’re seeing new initiatives like Open Compute and OpenStack. Sure these are helpful to hyperscale datacenters, but they are also enabling smaller companies and universities to deploy hyperscale-like infrastructure and get the same kind of automated control, efficiency and cost structures that hyperscale datacenters enjoy. (Of course they don’t get fully there on any front, but it’s a lot closer). This trend has the potential to hurt OEM and ISV business models and markets and establish new entrants – even as we see Quanta, TYAN, Foxconn, Wistron and others tentatively entering the broader market through these open initiatives.

New architectures and new algorithms: There is a clear movement toward pooled resources (or rack scale architecture, or disaggregated servers). Developing pooled resource solutions has become a partnership between core IP providers like Intel and LSI with the largest hyperscale datacenter architects. Traditionally new architectures were driven by OEMs, but that is not so true anymore. We are seeing new technologies emerge to enable these rack-scale architectures (RSA) – technologies like silicon photonics, pooled storage, software-defined networks (SDN), and we will soon see pooled main memory and new nonvolatile main memories in the rack.

We are also seeing the first tries at new processor architectures about to enter the datacenter: ARM 64 for cool/cold storage and web tier and OpenPower P8 for high power processing – multithreaded, multi-issue, pooled memory processing monsters. This is exciting to watch. There is also an emerging interest in application acceleration: general-purposing computing on graphics processing units (GPGPUs), regular expression processors (regex) live stream analytics, etc. We are also seeing the first generation of graph analysis deployed at massive scale in real time.

Innovation: The pace of innovation appears to be accelerating, although maybe I’m just getting older. But the easy gains are done. On one hand, datacenters need exponentially more compute and storage, and they need to operate 10x to 1000x more quickly. On the other, memory, processor cores, disks and flash technologies are getting no faster. The only way to fill that gap is through innovation. So it’s no surprise there are lots of interesting things happening at OEMs and ISVs, chip and solution companies, as well as open source community and startups. This is what makes it such an interesting time and industry.

Consumption shifts: We are seeing a decline in laptop and personal computer shipments, a drop that naturally is reducing storage demand in those markets. Laptops are also seeing a shift to SSD from HDD. This has been good for LSI, as our footprint in laptop HDDs had been small, but our presence in laptop SSDs is very strong. Smart phones and tablets are driving more cloud content, traffic and reliance on cloud storage. We have seen a dramatic increase in large HDDs for cloud storage, a trend that seems to be picking up speed, and we believe the cloud HDD market will be very healthy and will see the emergence of new, cloud-specific HDDs that are radically different and specifically designed for cool and cold storage.

There is also an explosion of SSD and PCIe flash cards in cloud computing for databases, caches, low-latency access and virtual machine (VM) enablement. Many applications that we take for granted would not be possible without these extreme low-latency, high-capacity flash products. But very few companies can make a viable storage system from flash at an acceptable cost, opening up an opportunity for many startups to experiment with different solutions.

Summary: So I believe the biggest hyperscale innovations are autonomous behavior and orchestration, HA at the datacenter level vs. machine level, and big data. These are radically changing the whole industry. And what are those changes for our industry and ecosystem? You name it: timing, end customers, new players, open initiatives, new architectures and algorithms, innovation, and consumption patterns. All that’s staying the same are legacy products and solutions.

These were great questions. Sometimes you need the press or someone outside the industry to ask a question that makes you step back and think about what’s going on. Great questions.

Restructuring the datacenter ecosystem (Part 2)

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (1958)


Many of you may have heard of a poem written by Robert Fulgham 25 years ago called “All I Really Need to Know I Learned in Kindergarten.” In it he provides such pearls of wisdom like “Play fair,” “Clean up your own mess,” “Don’t take things that aren’t yours” and “Flush.” By now you’re wondering what any of this has to do with storage technology. Well the #1 item on the kindergarten knowledge list is “Share Everything.” And from my perspective that includes DAS (direct-attached storage).

Sharable DAS has been a primary topic of discussion at this year’s annual LSI Accelerating Innovation Summit (AIS). During one keynote session I proposed a continuum of data sharing, spanning from traditional server-based DAS to traditional external NAS and SAN with multiple points in between – including external DAS, simple pooled storage, advanced pooled storage, shared storage and HA (high-availability) shared storage. Each step along the continuum adds incremental features and value, giving datacenter architects the latitude to choose – and pay for – only the level of sharing absolutely required, and no more. This level of choice is being very warmly received by the market as storage requirements vary widely among Web-cloud, private cloud, traditional enterprise, and SMB configurations and applications.

Sharable DAS pools storage for operational benefits and efficiencies
Sharable DAS, with its inherent storage resource pooling, offers a number of operational benefits and efficiencies when applied at the rack level:

  • Standardized storage architectures, leveraging economies of scale of today’s high-volume DAS solutions, and minimizing storage qualifications
  • Simplified volume, boot and unified storage management by extending today’s widely deployed storage management tools
  • Reduced number of compute and storage SKUs within a datacenter, minimizing training and maintenance costs
  • Simplified life cycle management by de-coupling the upgrade cycles of compute (typically 18-24 months) and storage (typically 3-5 years)

LSI rolls out proof-of-concept Rack Scale architecture using sharable DAS
In addition to just talking about sharable DAS at AIS, we also rolled out a proof-of-concept Rack Scale architecture employing sharable DAS.  In it we configured 20 servers with 12Gb/s SAS RAID controllers, a prototype 40-port 12Gb/s SAS switch (that’s 160 12Gb/s SAS lanes) and 10 JBODs with 12Gb/s SAS for a total of 200 disk drives – all in a single rack. The drives were configured as a single storage resource pool with our media sharing (ability to spread volumes across multiple disk drives and aggregate disk drive bandwidth) and distributed RAID (ability to disperse data protection across multiple disk drives) features. This configuration pools the server storage into a single resource, delivering substantial, tangible performance and availability improvements, when compared to 20 stand-alone servers. In particular, the configuration:

  • Enables active servers to claim unused bandwidth and IOPs
  • Enhances server performance when a disk drive fails, providing consistent high performance to applications by distributing the impact of a single drive failure across all the drives in the pool
  • Accelerates time to redundancy (TTR), greatly minimizing the window of vulnerability for subsequent disk drive failures

I’m sure you’ll agree with me that Rack Scale architecture with sharable DAS is clearly a major step forward in providing a wide range of storage solutions under a single architecture. This in turn provides a multitude of operational efficiencies and performance benefits, giving datacenter architects wide latitude to employ what is needed – and only what is needed.

Now that we’ve tackled the #1 item on the kindergarten learning list, maybe I’ll set my sights on another item, like “Take a nap every afternoon.”

 

 

Tags: , , , , , ,
Views: (1205)


Optimizing the work per dollar spent is a high priority in datacenters around the world. But there aren’t many ways to accomplish that. I’d argue that integrating flash into the storage system drives the best – sometimes most profound – improvement in the cost of getting work done.

Yea, I know work/$ is a US-centric metric, but replace the $ with your favorite currency. The principle remains the same.

I had the chance to talk with one of the execs who’s responsible for Google’s infrastructure last week. He talked about how his fundamental job was improving performance/$. I asked about that, and he explained “performance” as how much work an application could get done. I asked if work/$ at the application was the same, and he agreed – yes – pretty much.

You remember as a kid that you brought along a big brother as authoritative backup? OK – so my big brother Google and I agree – you should be trying to optimize your work/$. Why? Well – it could be to spend less, or to do more with the same spend, or do things you could never do before, or simply to cope with the non-linear expansion in IT demands even as budgets are shrinking. Hey – that’s the definition of improving work/$… (And as a bonus, if you do it right, you’ll have a positive green impact that is bound to be worth brownie points.)

Here’s the point. Processors are no longer scaling the same – sure, there are more threads, but not all applications can use all those threads. Systems are becoming harder to balance for efficiency. And often storage is the bottleneck. Especially for any application built on a database. So sure – you can get 5% or 10% gain, or even in the extreme 100% gain in application work done by a server if you’re willing to pay enough and upgrade all aspects of the server: processors, memory, network… But it’s almost impossible to increase the work of a server or application by 200%, 300% or 400% – for any money.

I’m going to explain how and why you can do that, and what you get back in work/$. So much back that you’ll probably be spending less and getting more done. And I’m going to explain how even for the risk-averse, you can avoid risk and get the improvements.

More work/$ from general-purpose DAS servers and large databases
Let me start with a customer. It’s a bank, and it likes databases. A lot. And it likes large databases even more. So much so that it needs disks to hold the entire database. Using an early version of an LSI Nytro™ MegaRAID® card, it got 6x the work from the same individual node and database license. You can read that as 600% if you want. It’s big. To be fair – that early version had much more flash than our current products, and was much more expensive. Our current products give much closer to 3x-4x improvement. Again, you can think of that as 300%-400%. Again, slap a Nytro MegaRAID into your server and it’s going to do the work of 3 to 4 servers. I just did a web search and, depending on configuration, Nytro MegaRAIDs are $1,800 to $2,800 online. I don’t know about you, but I would have a hard time buying 2 to 3 configured servers + software licenses for that little, but that’s the net effect of this solution. It’s not about faster (although you get that). It’s about getting more work/$.

But you also want to feel safe – that you’re absolutely minimizing risk. OK. Nytro MegaRAID is a MegaRAID card. That’s overwhelmingly the most common RAID controller in the world, and it’s used by 9 of the top 10 OEMs, and protects 10’s to 100‘s of millions of disks every day. The Nytro version adds private flash caching in the card and stores hot reads and writes there. Writes to the cache use a RAID 1 pair. So if a flash module dies, you’re protected. If the flash blocks or chip die wear out, the bad blocks are removed from the cache pool, and the cache shrinks by that much, but everything keeps operating – it’s not like a normal LUN that can’t change size. What’s more, flash blocks usually finally wear out during the erase cycle – so no data is lost.  And as a bonus, you can eliminate the traditional battery most RAID cards use – the embedded flash covers that – so no more annual battery service needed. This is a solution that will continue to improve work/$ for years and years, all the while getting 3x-4x the work from that server.

More work/$ from SAN-attached servers (without actually touching the SAN)
That example was great – but you don’t use DAS systems. Instead, you use a big iron SAN. (OK, not all SANs are big iron, but I like the sound of that expression.) There are a few ways to improve the work from servers attached to SANs. The easiest of course is to upgrade the SAN head, usually with a flash-based cache in the SAN controller. This works, and sometimes is “good enough” to cover needs for a year or two. However, the server still needs to reach across the SAN to access data, and it’s still forced to interact with other servers’ IO streams in deeper queues. That puts a hard limit on the possible gains. 

Nytro XD caches hot data in the server. It works with virtual machines. It intercepts storage traffic at the block layer – the same place LSI’s drivers have always been. If the data isn’t hot, and isn’t cached, it simply passes the traffic through to the SAN. I say this so you understand – it doesn’t actually touch the SAN. No risk there. More importantly, the hot storage traffic never has to be squeezed through the SAN fabric, and it doesn’t get queued in the SAN head. In other words, it makes the storage really, really fast.

We’ve typically found work from a server can increase 5x to 10x, and that’s been verified by independent reviewers. What’s more, the Nytro XD solution only costs around 4x the price of a high-end SAN NIC. It’s not cheap, but it’s way cheaper than upgrading your SAN arrays, it’s way cheaper than buying more servers, and it’s proven to enable you to get far more work from your existing infrastructure. When you need to get more work – way more work – from your SAN, this is a really cost-effective approach. Seriously – how else would you get 5x-10x more work from your existing servers and software licenses?

More work/$ from databases
A lot of hyperscale datacenters are built around databases of a finite size. That may be 1, 2 or even 4 TBytes. If you use Apple’s online services for iTunes or iCloud, or if you use Facebook, you’re using this kind of infrastructure.

If your datacenter has a database that can fit within a few TBytes (or less), you can use the same approach. Move the entire LUN into a Nytro WarpDrive® card, and you will get 10x the work from your server and database software. It makes such a difference that some architects argue Facebook and Apple cloud services would never have been possible without this type of solution. I don’t know, but they’re probably right. You can buy a Nytro WarpDrive for as little as a low-end server. I mean low end. But it will give you the work of 10. If you have a fixed-size database, you owe it to yourself to look into this one.

More work/$ from virtualized and VDI (Virtual Desktop) systems
Virtual machines are installed on a lot of servers, for very good reason. They help improve the work/$ in the datacenter by reducing the number of servers needed and thereby reducing management, maintenance and power costs. But what if they could be made even more efficient?

Wall Street banks have benchmarked virtual desktops. They found that Nytro products drive these results: support of 2x the virtual desktops, 33% improvement in boot time during boot storms, and 33% lower cost per virtual desktop. In a more general application mix, Nytro increases work per server 2x-4x.  And it also gives 2x performance for virtual storage appliances.

While that’s not as great as 10x the work, it’s still a real work/$ value that’s hard to ignore. And it’s the same reliable MegaRAID infrastructure that’s the backbone of enterprise DAS storage.

A real example from our own datacenter
Finally – a great example of getting far more work/$ was an experiment our CIO Bruce Decock did. We use a lot of servers to fuel our chip-design business. We tape out a lot of very big leading-edge process chips every year. Hundreds.  And that takes an unbelievable amount of processing to get what we call “design closure” – that is, a workable chip that will meet performance requirements and yield. We use a tool called PrimeTime that figures out timing for every signal on the chip across different silicon process points and operating conditions. There are 10’s to 100’s of millions of signals. And we run every active design – 10’s to 100’s of chips – each night so we can see how close we’re getting, and we make multiple runs per chip. That’s a lot of computation… The thing is, electronic CAD has been designed to try not to use storage or it will never finish – just /tmp space, but CAD does use huge amounts of memory for the data structures, and that means swap space on the order of TBytes. These CAD tools usually don’t need to run faster. They run overnight and results are ready when the engineers come in the next day. These are impressive machines: 384G or 768G of DRAM and 32 threads.  How do you improve work/$ in that situation? What did Bruce do?

He put LSI Nytro WarpDrives in the servers and pointed /tmp at the WarpDrives. Yep. Pretty complex. I don’t think he even had to install new drivers. The drivers are already in the latest OS distributions. Anyway – like I said – complex.

The result? WarpDrive allowed the machines to fully use the CPU and memory with no I/O contention. With WarpDrive, the PrimeTime jobs for static timing closure of a typical design could be done on 15 vs. 40 machines. That’s each Nytro node doing 260% of the work vs. a normal node and license. Remember – those are expensive machines (have you priced 768G of DRAM and do you know how much specialized electronic design CAD licenses are?) So the point wasn’t to execute faster. That’s not necessary. The point is to use fewer servers to do the work. In this case we could do 11 runs per server per night instead of just 4. A single chip design needs more than 150 runs in one night.

To be clear, the Nytro WarpDrives are a lot less expensive than the servers they displace. And the savings go beyond that – less power and cooling. Lower maintenance. Less admin time and overhead. Fewer Licenses.  That’s definitely improved work/$ for years to come. Those Nytro cards are part of our standard flow, and they should probably be part of every chip company’s design flow.

So you can improve work/$ no matter the application, no matter your storage model, and no matter how risk-averse you are.

Optimizing the work per dollar spent is a high – maybe the highest – priority in datacenters around the world. And just to be clear – Google agrees with me. There aren’t many ways to accomplish that improvement, and almost no ways to dramatically improve it. I’d argue that integrating flash into the storage system is the best – sometimes most profound – improvement in the cost of getting work done. Not so much the performance, but the actual work done for the money spent. And it ripples through the datacenter, from original CapEx, to licenses, maintenance, admin overhead, power and cooling, and floor space for years. That’s a pretty good deal. You should look into it.

For those of you who are interested, I already wrote about flash in these posts:
What are the driving forces behind going diskless?
LSI is green – no foolin’

 

Tags: , , , , , , , , , , , , , , , , , ,
Views: (1649)


Lenovo is whopping big. The planet’s second largest PC maker, the sixth largest server vendor and China’s top server supplier.

So when a big gun like Lenovo recognizes us with its Technology Innovation award for our 12G SAS technology, we love to talk about it. The lofty honor came at the recent Lenovo Supplier Conference in Hefei, China.

Hefei is big too. As recently at the mid-1930’s, Hefei was a quiet market town of only about 30,000. Today, it’s home to more than 7 million people spread across 4,300 square miles. No matter how you cut it, that’s explosive growth – and no less dizzying than the global seam-splitting growth that Lenovo is helping companies worldwide manage with its leading servers.

For more than a decade, LSI has been the SAS/RAID strategic partner for Lenovo and in 2009 it chose LSI as its exclusive SAS/RAID vendor. The reason: Our ability to provide enterprise class and industry-leading SAS/RAID solutions.  Lenovo says it better.

“In 2012, Lenovo began to sharpen its focus on the enterprise server business with the goal of becoming a tier-1 server in the global market,” said Jack Xing, senior sales manager in China. ”To support this strategy, the company realized the importance of selecting a trusted and innovative SAS/RAID partner, which is why it has turned to LSI exclusively for its 12G SAS technology.”

Trust. Innovation. High compliments from Lenovo, a major engine of technology innovation in one of the world’s fastest-growing economies. It’s dizzying, even heady. You can see why we love to talk about it.

Tags: , , , ,
Views: (7930)


I’m reminded that when I do what I do best and don’t try to be all things to all people, I get much more accomplished.  Interestingly, I’ve found that the same approach applies to server storage system controllers – and to the home PC I use for photo editing.

The question many of us face is whether it’s best to use an integrated or discrete solution. Think digital television. Do you want a TV with an integrated DVD player, or do you prefer a feature-rich, dedicated player that you can upgrade and replace independent of the TV? I’ve pondered a similar question many times when considering my PC: Do I use a motherboard with an integrated graphics controller or go with a discrete graphics adapter card.

If I look only at initial costs and am satisfied with the performance of my display for day-to-day computing activities, I could go with the integrated controller, something that many consumers do. But my needs aren’t that simple. I need multiple displays, higher screen resolution, higher display system performance, and the ability to upgrade and tune the graphics to my applications. To do these things, I go with a separate discrete graphics controller card.

Hardware RAID delivers enterprise-class data protection and features
In the datacenter, IT architects often face the choice between hardware RAID, a discrete solution, and software RAID, hardware RAID’s integrated counterpart. Hardware RAID offers enterprise-class robustness and features, such as higher performance without operating systems (OS) and application interference, particularly in compute-intensive RAID 5 and RAID 6 application environments.  Also, hardware-based RAID can help optimize the performance and scalability of the SAS protocol. Sure, the build of materials (BOM) costs with hardware RAID are higher when a RAID on Chip or IOC component enters the mix, but these purpose-built solutions are designed to deliver performance and flexibility unmatched by most software RAID solutions.

Enterprise-hardened RAID solutions that protect data, manage and deliver high availability can scale up and down because they are based on RAID-on-chip (ROC) solutions, and they are designed to provide a consistent experience and boot across OS’s and BIOS.

One of the biggest differences between hardware and software RAID is in data protection. For example, if the OS shuts down in the middle of a write, once it is back up the OS can’t recognize whether the write was compromised or failed because the RAID cache was from host memory.  A hardware RAID solution holds the write data in separate, non-volatile cache and completes the write when the system comes back online.  Even more subtly, the CPU and storage cache are offloaded from the host memory, freeing up resources for application performance.

Software RAID cost rises as features added
For software RAID to deliver write cache and advanced features, a non-volatile write cache via battery or flash backup schemes needs to be added, and suddenly the BOM costs are similar or higher than the more flexible hardware RAID solution.

In the end, LSI enterprise hardware RAID solutions bring many features and capabilities that simply cannot exist in a software RAID on-load environment.  To be sure, an enterprise server is no PC or TV, but the choice between a discrete and integrated solution, whether in consumer electronics or storage server technology, is of a kindred sort. I always feel gratified when we can help one of our customers make the best choice.

For more information about our enterprise RAID solutions please visit us at http://www.lsi.com/solutions/Pages/enterpriseRAID.aspx

Tags: , , , ,
Views: (7926)