Open Compute and OpenStack are changing the datacenter world that we know and love. I thought they were having impact. Changing our OEMs and ODM products, changing what we expect from our vendors, changing the interoperability of managing infrastructure from different vendors. Changing our ability to deploy and manage grid and scale-out infrastructure. And changing how quickly and at what high level we can be innovating. I was wrong. It’s happening much more quickly than I thought.

On November 20-21 we hosted LSI AIS 2013. As I mentioned in a previous post, I was lucky enough to moderate a panel about Open Compute and OpenStack – “the perfect storm.” Truthfully? It felt more like sitting with two friends talking about our industry over beer. I hope to pick up that conversation again someday.

The panelists were awesome: Cole Crawford of Open Compute and Chris Kemp of OpenStack. These guys are not only influential. They have been involved from the very start of these two initiatives, and are in many ways key drivers of both movements. These are impressive, passionate guys who really are changing the world. There aren’t too many of us who can claim that. It was an engaging hour that I learned quite a bit from, and I think the audience did too. I wanted to share from my notes what I took away from that panel. I think you’ll be interested.

 

 Goals and Vision: two open source initiatives
There were a few motivations behind Open Compute, and the goal was to improve these things.

  • There have been no standards or formats for interchange in hardware design.
  • IT infrastructure has roots going back to railway switching standards (19” rack).
  • IT infrastructure has consisted of very closed systems with limited interoperability.
  • Datacenters have been wasting tremendous amounts of energy and resources on cooling and power distribution.

The goal then, for the first time, is to work backwards from workload and create open source hardware and infrastructure that is openly available and designed from the start for large scale-out deployments. The idea is to drive high efficiency in cost, materials use and energy consumption. More work/$.

One surprising thing that came up – LSI is in every current contribution in Open Compute.

OpenStack layers services that describe abstractions of computer networking and storage. LSI products tend to sit at that lowest level of abstraction, where there is now a wave of innovation. OpenStack had similar fragmentation issues to deal with and its goals are something like:

  • Bring software resource components together for pooled compute, storage and network resources.
  • Present them as resources for application deployment.
  • Create a virtual reference implementation, where the details can vary.
  • Allow integrating new infrastructure under that abstraction.
  • Simplify deployment of clusters at scale.
  • Almost like a kernel for the scale-out cluster

There is a certain amount of compatibility with Amazon’s cloud services. Chris’s point was that Amazon is incredibly innovative and a lot of enterprises should use it, but OpenStack enables both service providers and private clouds to compete with Amazon, and it allows unique innovation to evolve on top of it.

OpenStack and Open Compute are not products. They are “standards” or platform architectures, with companies using those standards to innovate on top of them. The idea is for one company to innovate on another’s improvements – everybody building on each other’s work. A huge brain trust. The goal is to create a competitive ecosystem and enable a rapid pace of innovation, and enable large-scale, inexpensive infrastructure that can be managed by a small team of people, and can be managed like a single server to solve massive scale problems.

Here’s their thought. Hardware is a supply chain management game + services.  Open Compute is an opportunity for anyone to supply that infrastructure. And today, OEMs are killer at that. But maybe ODMs can be too. Open Compute allows innovation on top of the basic interoperable platforms. OpenStack enables a framework for innovation on top as well: security, reliability, storage, network, performance. It becomes the enabler for innovation, and it provides an “easy” way for startups to plug into a large, vibrant ecosystem. And for customers – someone said its “exa data without exadollar”…

As a result, the argument is this should be good for OEMs and ISVs, and help create a more innovative ecosystem and should also enable more infrastructure capacity to create new and better services. I’m not convinced that will happen yet, but it’s a laudable goal, and frankly that promise is part of what is appealing to LSI.

Open Compute and OpenStack are peanut butter and jelly
Ok – if you’re outside of the US, that may not mean much to you. But if you’ve lived in the US, you know that means they fit perfectly, and make something much greater together than their humble selves.

Graham Weston, Chairman of the Rackspace Board, was the one who called these two “peanut butter and jelly.”

Cole and Chris both felt the initiatives are co-enabling, and probably co-travelers too. Sure they can and will deploy independently, but OpenStack enables the management of large scale clusters, which really is not easy. Open Compute enables lower cost large-scale manageable clusters to be deployed. Together? Large-scale clusters that can be installed and deployed more affordably, and easily without hiring a cadre of rare experts.

Personally? I still think they are both a bit short of being ready for “prime time” – or broad deployment, but Cole and Chris gave me really valid arguments to show me I’m wrong. I guess we’ll see.

US or global vision?
I asked if these are US-centric or global visions. There were no qualms – these are global visions. This is just the 3rd anniversary of OpenStack, but even so, there are OpenStack organizations in more than 100 countries, 750 active contributors, and large-scale deployments in datacenters that you probably use every day – especially in China and the US. Companies like PayPal and Yahoo, Rackspace, Baidu, Sina Weibo, Alibaba, JD, and government agencies and HPC clusters like CERN, NASA, and China Defense.

Open Compute is even younger – about 2 years old. (I remember – I was invited to the launch). Even so, most of Facebook’s infrastructure runs on Open Compute. Two Wall Street banks have deployed large clusters, with more coming, and Riot Games, which uses Open Compute infrastructure, drives 3% of the global network traffic with League of Legends. (A complete aside – one of my favorite bands to workout with did a lot of that game’s music, and the live music at the League of Legends competition a few months ago: http://www.youtube.com/watch?v=mWU4QvC09uM – not for everyone, but I like it.)

Both Cole and Chris emailed me more data after the fact on who is using these initiatives. I have to say – they are right. It really has taken off globally, especially OpenStack in the fast-paced Chinese market this year.

Book: 4th Paradigm – A tribute to computer science researcher Jim Grey
Cole and Chris mentioned a book during the panel discussion. A book I had frankly never heard of. It’s called the 4th Paradigm. It was a series of papers dedicated to researcher Jim Grey, who was a quiet but towering figure that I believe I met once at Microsoft Research. The book was put together by Gordon Bell, someone who I have met, and have profound respect for. And there are mentions of people, places, and things that have been woven through my (long) career. I think I would sum up its thesis in a quote from Jim Grey near the start of the book:

“We have to do better producing tools to support the whole research cycle – from data capture and data curation to data analysis and data visualization.”

This is stunningly similar to the very useful big data framework we have been using recently at LSI: ”capture, hold, analyze”… I guess we should have added visualize, but that doesn’t have too much to do with LSI’s business.

As an aside, I would recommend this book for the background and inspiration in why we as an industry are trying to solve many of these computer science problems, and how transformational the impact might be. I mean really transformational in the world around us, what we know, what we can do, and how quickly we can do it – which is tightly related to our CEO’s keynote and the vision video at AIS.

Demos at AIS: peanut butter and jelly - and bread?
Ok – I’m struggling for analogy. We had an awesome demo at AIS that Chris and Cole pointed out during the panel. It was originally built using Nebula’s TOR appliance, Open Compute hardware, and LSI’s storage magic to make it complete. The three pieces coming together. Tasty. The Open Compute hardware was swapped out last minute (for safety, those boxes were meant for the datacenter – not the showcase in a hotel with tipsy techies) and were  generously supplied by Supermicro.

I don’t think the proto was close to any one of our visions, but even as it stood, it inspired a lot of people, and would make a great product. A short rack of servers, with pooled storage in the rack, OpenStack orchestrating the point and click spawning and tear down of dynamically sized LUNs of different characteristics under the Cinder presentation layer, and deployment of tasks or VMs on them.

We’re working on completing our joint vision. I think the industry will be very impressed when they see it. Chris thinks people will be stunned, and the industry will be changed.

Catalyzing the market The future may be closer than we think
Ultimately, this is all about economics. We’re in the middle of an unprecedented bifurcation in IT use. On one hand we’re running existing apps on new, dense enterprise hardware using VMs to layer many applications on few servers. On the other, we’re investing in applications to run at scale across inexpensive clusters of commodity hardware. This has spawned a split in IT vendor business units, product lines and offerings, and sometimes even IT infrastructure management in the datacenter.

New applications and services are needing more infrastructure, and are getting more expensive to power, cool, purchase, run. And there is pressure to transform the datacenter from a cost center into a profit center. As these innovations start, more companies will need scale infrastructure, arguably Open Compute, and then will need an Openstack framework to deploy it quickly.

Whats this mean? With a combination of big data and mobile device services driving economic value, we may be at the point where these clusters start to become mainstream. As an industry we’re already seeing a slight decline in traditional IT equipment sales and a rapid growth in scale-out infrastructure sales. If that continues, then OpenStack and Open Compute are a natural fit. The deployment rate uptick in life sciences, oil and gas, financials this year – really anywhere there is large-scale Hadoop, big data or analytics – may be the start of that growth curve. But both Chris and Cole felt it would probably take 5 years to truly take off.

Time to Wrap Up
I asked Chris and Cole for audience takeaways. Theirs were pretty simple, though possibly controversial in an industry like ours.

Hardware vendors should think about products and how they interface and what abstractions they present and how they fit into the ecosystem. These new ecosystems should allow them to easily plug in. For example, storage under Cinder can be quickly and easily morphed – that’s what we did with our demo.

We should be designing new software to run on distributed scale-out systems in clouds. Chris went on to say their code name was “Maestro” because it orchestrates like in a symphony, bringing things together in a beautiful way. He said “make instruments for the artists out there.” The brain trust. Look for their brushstrokes.

Innovate in the open, and leverage the open initiatives that are available to accelerate innovation and efficiency.

On your next IT purchase, try an RFP with an Open Compute vendor. Cole said you might be surprised. Worst case, you may get a better deal from your existing vendor.

So, Open Compute and Openstack are changing the datacenter world that we know and love. I thought these were having a quick impact, changing our OEMs and ODM products, changing what we expect from our vendors, changing the interoperability of managing infrastructure from different vendors, changing our ability to deploy and manage grid and scale-out infrastructure, and changing how quickly and at what high level we can be innovating. I was wrong. It’s happening much more quickly than even I thought.

 

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Views: (1483)


Walking the Great Wall before visits to some of China’s hyperscale datacenters

I’ve been travelling to China quite a bit over the last year or so. I’m sitting in Shenzhen right now (If you know Chinese internet companies, you’ll know who I’m visiting). The growth is staggering. I’ve had a bit of a trains, planes, automobiles experience this trip, and that’s exposed me to parts of China I never would have seen otherwise. Just to accommodate sheer population growth and the modest increase in wealth, there is construction everywhere – a press of people and energy, constant traffic jams, unending urban centers, and most everything is new. Very new. It must be exciting to be part of that explosive growth. What a market.  I mean – come on – there are 1.3 billion potential users in China.

The amazing thing for me is the rapid growth of hyperscale datacenters in China, which is truly exponential. Their infrastructure growth has been 200%-300% CAGR for the past few years. It’s also fantastic walking into a building in China, say Baidu, and feeling very much at home – just like you walked into Facebook or Google. It’s the same young vibe, energy, and ambition to change how the world does things. And it’s also the same pleasure – talking to architects who are super-sharp, have few technical prejudices, and have very little vanity – just a will to get to business and solve problems. Polite, but blunt. We’re lucky that they recognize LSI as a leader, and are willing to spend time to listen to our ideas, and to give us theirs.

Even their infrastructure has a similar feel to the US hyperscale datacenters. The same only different.  ;-)

Alibaba (top and bottom) and Baidu visitor badges

Profitability
A lot of these guys are growing revenue at 50% per year, several getting 50% gross margin. Those are nice numbers in any country. One has $100’s of billions in revenue.  And they’re starting to push out of China.  So far their pushes into Japan have not gone well, but other countries should be better. They all have unique business models. “We” in the US like to say things like “Alibaba is the Chinese eBay” or “Sina Weibo is the Chinese Twitter”…. But that’s not true – they all have more hybrid business models, unique, and so their datacenter goals, revenue and growth have a slightly different profile. And there are some very cool services that simply are not available elsewhere. (You listening Apple®, Google®, Twitter®, Facebook®?) But they are all expanding their services, products and user base. Interestingly, there is very little public cloud in China. So there are no real equivalents to Amazon’s services or Microsoft’s Azure. I have heard about current development of that kind of model with the government as initial customer. We’ll see how that goes.

Scale
100’s of thousands of servers. They’re not the scale of Google, but they sure are the scale of Facebook, Amazon, Microsoft…. It’s a serious market for an outfit like LSI. Really it’s a very similar scale now to the US market. Close to 1 million servers installed among the main 4 players, and exabytes of data (we’ve blown past mere petabytes). Interestingly, they still use many co-location facilities, but that will change. More important – they’re all planning to probably double their infrastructure in the next 1-2 years – they have to – their growth rates are crazy.

Platforms
Often 5 or 6 distinct platforms, just like the US hyperscale datacenters. Database platforms, storage platforms, analytics platforms, archival platforms, web server platforms…. But they tend to be a little more like a rack of traditional servers that enterprise buys with integrated disk bays, still a lot of 1G Ethernet, and they are still mostly from established OEMs. In fact I just ran into one OEM’s American GM, who I happen to know, in Tencent’s offices today. The typical servers have 12 HDDs in drive bays, though they are starting to look at SSDs as part of the storage platform. They do use PCIe® flash cards in some platforms, but the performance requirements are not as extreme as you might imagine. Reasonably low latency and consistent latency are the premium they are looking for from these flash cards – not maximum IOPs or bandwidth – very similar to their American counterparts. I think hyperscale datacenters are sophisticated in understanding what they need from flash, and not requiring more than that. Enterprise could learn a thing or two.

Some server platforms have RAIDed HDDs, but most are direct map drives using a high availability (HA) layer across the server center – Hadoop® HDFS or self-developed Hadoop like platforms. Some have also started to deploy microserver archival “bit buckets.” A small ARM® SoC with 4 HDDs totaling 12 TBytes of storage, giving densities like 72 TBytes of file storage in 2U of rack. While I can only find about 5,000 of those in China that are the first generation experiments, it’s the first of a growing wave of archival solutions based on lower performance ARM servers. The feedback is clear – they’re not perfect yet, but the writing is on the wall. (If you’re wondering about the math, that’s 5,000 x 12 TBytes = 60 Petabytes….)

Power
Yes, it’s important, but maybe more than we’re used to. It’s harder to get licenses for power in China. So it’s really important to stay within the envelope of power your datacenter has. You simply can’t get more. That means they have to deploy solutions that do more in the same power profile, especially as they move out of co-located datacenters into private ones. Annually, 50% more users supported, more storage capacity, more performance, more services, all in the same power. That’s not so easy. I would expect solar power in their future, just as Apple has done.

Scorpio
Here’s where it gets interesting. They are developing a cousin to OpenCompute that’s called Scorpio. It’s Tencent, Alibaba, Baidu, and China Telecom so far driving the standard.  The goals are similar to OpenCompute, but more aligned to standardized sub-systems that can be co-mingled from multiple vendors. There is some harmonization and coordination between OpenCompute and Scorpio, and in fact the Scorpio companies are members of OpenCompute. But where OpenCompute is trying to change the complete architecture of scale-out clusters, Scorpio is much more pragmatic – some would say less ambitious. They’ve finished version 1 and rolled out about 200 racks as a “test case” to learn from. Baidu was the guinea pig. That’s around 6,000 servers. They weren’t expecting more from version 1. They’re trying to learn. They’ve made mistakes, learned a lot, and are working on version 2.

Even if it’s not exciting, it will have an impact because of the sheer size of deployments these guys are getting ready to roll out in the next few years. They see the progression as 1) they were using standard equipment, 2) they’re experimenting and learning from trial runs of Scorpio versions 1 and 2, and then they’ll work on 3) new architectures that are efficient and powerful, and different.

Information is pretty sketchy if you are not one of the member companies or one of their direct vendors. We were just invited to join Scorpio by one of the founders, and would be the first group outside of China to do so. If that all works out, I’ll have a much better idea of the details, and hopefully can influence the standards to be better for these hyperscale datacenter applications. Between OpenCompute and Scorpio we’ll be seeing a major shift in the industry – a shift that will undoubtedly be disturbing to a lot of current players. It makes me nervous, even though I’m excited about it. One thing is sure – just as the server market volume is migrating from traditional enterprise to hyperscale datacenter (25-30% of the server market and growing quickly), we’re starting to see a migration to Chinese hyperscale datacenters from US-based ones. They have to grow just to stay still. I mean – come on – there are 1.3 billion potential users in China….

Tags: , , , , , , , , , , , , , , , , , , , , , ,
Views: (71312)